JON M. HUNTSMAN, JR. Governor GARY R. HERBERT Lieutenant Governor # Department of Administrative Services KIMBERLY K. HOOD Executive Director Division of Facilities Construction and Management DAVID G. BUXTON Director # **ADDENDUM #1** Date: October 16, 2007 From: Wayne Smith, Project Manager, DFCM Reference: Cafeteria Rooftop Unit Replacement Rampton Building Department of Transportation DFCM Project # 07237900 Subject: Addendum # 1 Pages Addendum Cover page Specifications pages 118 Total 119 Note: This Addendum shall be included as part of the Contract Documents. Items in this Addendum apply to all drawings and specification sections whether referenced or not involving the portion of the work added, deleted, modified, or otherwise addressed in the Addendum. #### 1.1 SCHEDULE HAS NOT BEEN CHANGED 1.2 Specifications # UDOT CALVIN RAMPTON CAFETERIA ROOFTOP REPLACEMENT **DFCM PROJECT #07237900** State of Utah—Department of Administrative Services # DIVISION OF FACILITIES CONSTRUCTION AND MANAGEMENT 4110 State Office Building / Salt Lake City, Utah 84114 / 538-3018 # **SPECIFICATIONS** PREPARED BY WHW ENGINEERING INC. 1354 EAST 3300 SOUTH, SUITE 200 SALT LAKE CITY, UTAH 84106 PHONE: (801) 466-4021 FAX: (801) 466-8536 September 2007 WHW Engineering Project #07035 #### **DIVISION 1- GENERAL REQUIREMENTS** 01000 GENERAL REQUIREMENTS 01100 SUMMARY #### **DIVISION 15 - MECHANICAL** | 1 | 5010 | GENERA | J REQU | JIRF1 | /FNT | S | |---|------|---------------|--------|-------|------|---| | | | | | | | | - 15050 BASIC MATERIALS & METHODS - 15074 VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT - 15075 MECHANICAL IDENTIFICATION - 15083 HVAC INSULATION - 15181 HYDRONIC PIPING - 15732 PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS - 15815 METAL DUCTS - 15820 DUCT ACCESSORIES - 15900 HVAC INSTRUMENTATION AND CONTROLS - 15950 TESTING, ADJUSTING BALANCING TABLE OF CONTENTS 1 # DIVISION 1 GENERAL REQUIREMENTS 01000 GENERAL REQUIREMENTS 01100 SUMMARY # **SECTION 01000 - GENERAL REQUIREMENTS** #### **PART 1 - GENERAL** - 1.1 This is a DFCM single prime project. All DFCM standards, including General conditions, standard contracts, and design and construction guidelines are incorporated as part of the contact documents by this reference. - 1.2 Cafeteria shall remain operational throughout the project. Unit Change-over shall occur Friday through Sunday. This contractor shall be responsible for after hours or weekend pay as necessary. PART 2 - PRODUCTS (Not Applicable) PART 3 - EXECUTION (Not Applicable) **END OF SECTION 01000** #### **SECTION 01100 - SUMMARY** #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and other Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Work covered by the Contract Documents. - 2. Type of the Contract. - 3. Owner's occupancy requirements. - 4. Work restrictions. - 5. Specification formats and conventions. #### 1.3 WORK COVERED BY CONTRACT DOCUMENTS - A. Project Identification: UDOT Calvin Rampton Building Cafeteria Rooftop HVAC unit Replacement DFCM #07237900. - 1. Project Location: 4500 South 2700 West Taylorsville, UT - B. Owner: State of Utah DFCM. - 1. Owner's Representative: Wayne Smith DFCM Project Manager. - C. Architect: WHW Engineering 1354 East 3300 South #200 Salt Lake City, Utah 84106. - D. The Work consists of the following: - 1. The Work includes replacing a semi-custom dual duct rooftop unit. #### 1.4 TYPE OF CONTRACT A. Project will be constructed under a single prime contract. #### 1.5 USE OF PREMISES A. General: Each Contractor shall have limited use of premises for construction operations as indicated in project documents. - B. Use of Site: Limit use of premises to areas within the Contract limits indicated. Do not disturb portions of Project site beyond areas in which the Work is indicated. - 1. Owner Occupancy: Allow for Owner occupancy of Project site and use by the public. - 2. Driveways and Entrances: Keep driveways loading areas, and entrances serving premises clear and available to Owner, Owner's employees, and emergency vehicles at all times. Do not use these areas for parking or storage of materials. - a. Schedule deliveries to minimize use of driveways and entrances. - b. Schedule deliveries to minimize space and time requirements for storage of materials and equipment on-site. - C. Use of Existing Building: Maintain existing building in a weather tight condition throughout construction period. Repair damage caused by construction operations. Protect building and its occupants during construction period. #### 1.6 OWNER'S OCCUPANCY REQUIREMENTS - A. Full Owner Occupancy: Owner will occupy site and existing building during entire construction period. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's day-to-day operations. Maintain existing exits, unless otherwise indicated. - Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction. - 2. Provide not less than 72 hours' notice to Owner of activities that will affect Owner's operations. - B. Partial Owner Occupancy: Owner will occupy the premises during entire construction period, with the exception of areas under construction. Cooperate with Owner during construction operations to minimize conflicts and facilitate Owner usage. Perform the Work so as not to interfere with Owner's operations. Maintain existing exits, unless otherwise indicated. - Maintain access to existing walkways, corridors, and other adjacent occupied or used facilities. Do not close or obstruct walkways, corridors, or other occupied or used facilities without written permission from Owner and authorities having jurisdiction. - 2. Provide not less than 72 hours' notice to Owner of activities that will affect Owner's operations. - C. Owner Occupancy of Completed Areas of Construction: Owner reserves the right to occupy and to place and install equipment in completed areas of building, before Substantial Completion, provided such occupancy does not interfere with completion of the Work. Such placement of equipment and partial occupancy shall not constitute acceptance of the total Work. - 1. Architect will prepare a Certificate of Substantial Completion for each specific portion of the Work to be occupied before Owner occupancy. - 2. Obtain a Certificate of Occupancy from authorities having jurisdiction before Owner occupancy. - 3. Before partial Owner occupancy, mechanical and electrical systems shall be fully operational, and required tests and inspections shall be successfully completed. On occupancy, Owner will operate and maintain mechanical and electrical systems serving occupied portions of building. - 4. On occupancy, Owner will assume responsibility for maintenance and custodial service for occupied portions of building. #### 1.7 WORK RESTRICTIONS - A. On-Site Work Hours: Work shall be generally performed inside the existing building during normal business working hours of 8:00 a.m. to 5:00 p.m., Monday through Friday, except otherwise indicated. - B. Existing Utility Interruptions: Do not interrupt utilities serving facilities occupied by Owner or others unless permitted under the following conditions and then only after arranging to provide temporary utility services according to requirements indicated: - 1. Notify Owner not less than three days in advance of proposed utility interruptions. - 2. Do not proceed with utility interruptions without Owner's written permission. #### 1.8 SPECIFICATION FORMATS AND CONVENTIONS - A. Specification Format: The Specifications are organized into Divisions and Sections using the 16-division format and CSI/CSC's "MasterFormat" numbering system. - Section Identification: The Specifications use Section numbers and titles to help cross-referencing in the Contract Documents. Sections in the Project Manual are in numeric sequence; however, the sequence is incomplete because all available Section numbers are not used. Consult the table of contents at the beginning of the Project Manual to determine numbers and names of Sections in the Contract Documents. - 2. Division 1: Sections in Division 1 govern the execution of the Work of all Sections in the Specifications. - B. Specification Content: The Specifications use certain conventions for the style of language and the intended meaning of certain terms, words, and phrases when used in particular situations. These conventions are as follows: - 1. Abbreviated Language: Language used in the Specifications and other Contract Documents is abbreviated. Words and meanings shall be interpreted as appropriate. Words implied, but not stated, shall be inferred as the sense requires. Singular words shall be interpreted as plural and plural words shall be interpreted as singular where applicable as the context of the Contract Documents indicates. - 2. Imperative mood and streamlined language are generally used in the Specifications. Requirements expressed in the imperative mood are to be performed by Contractor. Occasionally, the indicative or subjunctive mood may be used in the Section Text for clarity to describe responsibilities that must be fulfilled indirectly by Contractor or by others when so noted. - a. The words "shall," "shall be," or "shall comply with," depending on the context, are implied where a colon (:) is used within a sentence or phrase. #### 1.9 MISCELLANEOUS PROVISIONS PART 2 - PRODUCTS (Not Used) PART 3 - EXECUTION (Not Used) **END OF SECTION 01100** # DIVISION 15 MECHANICAL | 15010 | GENERAL REQUIREMENTS | |-------
--| | 15050 | BASIC MATERIALS & METHODS | | 15074 | VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT | | 15075 | MECHANICAL IDENTIFICATION | | 15083 | HVAC INSULATION | | 15181 | HYDRONIC PIPING | | 15732 | PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS | | 15815 | METAL DUCTS | | 15820 | DUCT ACCESSORIES | | 15900 | HVAC INSTRUMENTATION AND CONTROLS | | 15950 | TESTING, ADJUSTING AND BALANCING | | | | # <u>SECTION 15010 - GENERAL REQUIREMENTS</u> #### **PART 1 - GENERAL** #### 1.1 GENERAL A. General Conditions and Division 01 apply to this Division. #### 1.2 SCOPE #### A. Includes - - 1. Furnish all labor, materials, and equipment necessary for the completion of the mechanical and plumbing scope of work. - 2. Furnish and install all motors specified in this Division and be responsible for the proper operation of electrical powered equipment furnished by this Division. - 3. Furnish exact location of electrical connections and information on motor controls to Division 16. - 4. Mechanical Contractor shall obtain the services of independent Test and Balance Agency. - 5. Placing the air conditioning, heating, ventilating, and exhaust systems into full operation and continuing their operation during each working day of testing and balancing. - 6. Making changes in pulleys, belts, and dampers, or adding dampers, as required for the correct balance as recommended by Balancing Contractor at no additional cost to Owner. - 7. Air balance, final adjustment and test run. - 8. The satisfactory performance of the completed systems is a requirement of this specification. #### B. Related Work Specified Elsewhere - - 1. Conduit, line voltage wiring, outlets, and disconnect switches specified in Division 16. - 2. Magnetic starters and thermal protective devices (heaters) not a factory mounted integral part of packaged equipment are specified in Division 16. # 1.3 SITE OBSERVATION - A. The Contractor shall examine the site and understand the conditions which may affect the performance of work of this Division before submitting proposals for this work. - B. No subsequent allowance for time or money will be considered for any consequence related to failure to examine existing site conditions. #### 1.4 DRAWINGS - A. Mechanical drawings show general arrangement of piping, ductwork, equipment, etc; however, locations are to be regarded as shown diagrammatically only. Follow as closely as actual building construction and work of other trades will permit. - B. Because of the small scale of mechanical drawings, it is not possible to indicate all offsets, fittings, and accessories which may be required. Investigate existing structural and finished conditions affecting this work and arrange work accordingly, providing such fittings, valves, and accessories required to meet conditions. - C. If changes in location of piping, equipment, ducts, etc. are required due to lack of coordination of work under this division, such changes shall be made without charge. Contractor shall review drawings with local and state agencies having jurisdiction and any changes required by them shall be brought to the attention of the Engineer prior to bidding or commencement of work. #### 1.5 CODE REQUIREMENTS, FEES, AND PERMITS - A. The work shall be installed in accordance with the following applicable codes, ordinances and standards unless otherwise specified. The codes and standards shall include but not be limited to and be of the latest and current editions. - 1. American Boiler and Affiliated Industries (AB and AI) - 2. American Gas Association (AGA) - 3. Air Movement and Control Association (AMCA) - 4. American National Standards Institute (ANSI) - 5. Air Conditioning & Refrigeration Institute (ARI) - 6. American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) ASHRAE 90.1-2004 - 7. American Society of Mechanical Engineers (ASME) - 8. American Society of Testing Materials (ASTM) - 9. American Standards Association (ASA) - 10. American Water Works Association (AWWA) - 11. American Welding Society (AWS) - 12. Associated Air Balance Council (AABC) - 13. Heat Exchange Institute (HEI) - 14. Hydraulic Institute (HI) - 15. BR - 16. National Electrical Code (NEC) - 17. National Fire Protection Association (NFPA) - 18. Sheet Metal and Air Conditioning contractors National Association (SMACNA) - 19. Underwriters Laboratories (UL) - 20. International Building Code (IBC) 2006 Ed - 21. International Mechanical Code (IMC) 2006 Ed - 22. International Plumbing Code (IPC) with Utah Amendments 2006 Ed - 23. International Energy Conservation Code (IECC) 2006 Ed - 24. Utah State Safety Orders (OSHA/UOSH) - 25. Utah Fire Rating Bureau - 26. Utah Boiler and Pressure Vessel Law - 27. Utah Air Conservation Regulations/Waste Disposal regulations. - 28. ASHRAE Ventilation STD.62-2004 - B. Should drawings conflict with any code, the code shall govern. If drawings and specifications establish a quality exceeding the code, the drawings and specifications shall govern. If conflicts do exist among the drawings, specifications and codes, the same shall be brought to the attention of the Engineerin writing prior to bidding, otherwise Contractor shall comply with applicable codes. - C. The latest edition of all codes shall be used. - D. Contractor shall give all notices, obtain all necessary permits, file necessary plans, prepare documents and obtain approvals, and pay all fees required for completion of the mechanical and plumbing work outlined in this Division of the specifications and shown on the Mechanical Drawings. #### 1.6 OPERATION AND MAINTENANCE MANUAL FOR MECHANICAL SYSTEMS - A. Upon completion of work and before final payment, Contractor shall furnish and deliver to the Owner, through the Engineer, installation, operation and maintenance manuals with instructions for all new materials and equipment used in the building. The contractor shall provide three (3) hard copies of the manuals, and three (3) CD's with electronic copies of the manuals. Electronic information shall be .PDF format. The CD's shall include the same information as the hard copies, and shall be organized in the same manner with electronic bookmarks for each section. CD case and the CD itself shall be labeled the same as the hard copies of the manuals. - B. Bind Operation and Maintenance Manual for Mechanical Systems in a hard-backed piano hinge loose-leaf binder with strong sturdy cover. The project name shall be on the spine and the front of the binder. The front of the binder shall include the following information: OPERATION AND MAINTENANCE MANUAL for MECHANICAL SYSTEMS of (Name of Project) (Location of Project) (Date of Project Award) (Name of Architect) #### C. Introduction - 1. Title page including name of project, project number, date awarded and date of substantial completion. - 2. Second page shall contain the names, phone numbers and addresses of Architect, Consulting Engineers, Mechanical Contractor, and General Contractor - 3. Third page shall include a Table of Contents for the entire manual. # D. First Section - Summary information including: - 1. First page shall contain the contractor's warranties. - 2. Second page shall contain a list of names, addresses and phone numbers of contractors and all sub-contractors and work to which each was assigned. - 3. Final page or pages shall contain an equipment list. The list shall contain each item of equipment or material for which a submittal was required giving ID or tag no as contained on the drawings make and model No. Serial No. Identification No. Location in building, function along with the name, address, and phone number of the supplier. # E. Second Section - Mechanical Equipment O&M data including: - 1. Mechanical maintenance schedule, including a lubrication list when necessary. - 2. Mechanical Equipment Operation and Maintenance Data including: - a. Equipment descriptions - b. Detailed installation instruction, operating and maintenance instructions. Instructions include in a step by step manner identifying start-up, operating, shutdown and emergency action sequence sufficiently clear so a person unfamiliar with the equipment could perform its operations. - c. Equipment drawings, performance curves, operating characteristics, etc. - d. Name addresses and phone number of manufacturer, fabricator and local vender clearly printed or stamped on cover. - e. Complete parts listing which include catalog number, serial number, contract number or other accurate provision for ordering replacement and spare parts. - f. Certified drawings, where applicable, showing assembly of parts and general dimensions. #### 3. Approved Mechanical submittals # G. Third Section - Controls O&M data including: - 1. Sequence of Operation - 2. Description of each operating system included location of switches, breakers, thermostats, and control devices. Provide a single line diagram, - showing set points, normal operating parameters for all loads, pressures, temperatures and flow check points; Describe all alarms and cautions for operation. - 3. Provide schematic control diagrams, panel diagrams, wiring diagrams, etc. for each separate fan system, chilled water system, hot water system, exhaust air system, pumps, etc. Each control diagram shall show a schematic representation of mechanical equipment and location of start-stop switches, insertion thermostats, thermometers, pressure gauges, automatic valves, etc. The correct reading for each control instrument shall be marked on the diagram. - H. The Forth Section shall contain a complete air and water test and balance report. The report shall contain the name, address and phone number of the agency. It shall also include: - 1. Floor plans showing all air openings and thermometer locations clearly marked and cross referenced with data sheets. Format may be 8 1/2 x 11 or 11x14 if legible. - Data sheets showing amount of
air and water at each setting. See sections 15950. - 3. List of equipment with date of last calibration. - Section C Drawings and reproducible masters of drawings as required in individual specification sections, are not to be bound in volumes but are to be delivered separate with the maintenance manuals. - J. See the following checklist for assistance in assembling manual: | Item # | Description | Y,
NA | N, | or | |--------|--|----------|----|----| | 1. | 3 ring heavy duty binder with Project name, number and date on cover and | | | | | | project name on spine. | | | | | 2. | O&M manual on CD (with label on CD matching label on manual). Electronic | | | | | | copy shall be a PDF file with bookmarks that match the tabs in the hard copy. | | | | | 3. | Title Page [including project name, number, address, date awarded, date of substantial completion] | | | | | 4. | Second Page Contact List [including architect (if applicable), mechanical | | | | | | engineer, mechanical contractor, and general contractor (if applicable)] | | | | | 5. | Table of Contents | | | | | 6. | Section 1 - Summary | | | | | A. | Warranty | | | | | B. | Mechanical's Sub-contractor List | | | | | C. | Vendor List | | | | | D. | Equipment List | | | | | 7. | Section 2 – Mechanical Equipment | | | | | A. | Maintenance Schedule (including lubrication list) | | | | | В. | Mechanical Equipment O&M Data (for each piece of equipment submitted) per specifications | | | | | C. | Approved mechanical submittals | | |----|---|--| | 8. | Section 3 - Controls | | | A. | Sequence of Operation | | | B. | Controls diagrams | | | C. | Controls Equipment | | | 9. | Section 4 – Test and Balance Report | | | A. | Complete Test and Balance Report per specifications | | # 1.7 OPERATION AND MAINTENANCE INSTRUCTIONS - A. Contractor shall instruct building maintenance personnel in the operation and maintenance of the installed mechanical systems utilizing the Operation and Maintenance Manual when so doing. - B. Minimum instruction periods shall be as follows - - 1. Mechanical Four hours. - 2. Temperature Control Two hours. - C. Instruction periods shall occur before final site observation when systems are properly working and before final payment is made. - D. None of these instructional periods shall overlap each other. - E. An additional four hours of instruction will be provided by each contractor, after 60 days of system operation by owner to insure proper system operation and answer questions. #### 1.8 RECORD DRAWINGS A. Contractor shall keep an up-to-date set of mechanical and plumbing drawings in his custody showing all changes in red, clearly defined and neatly drafted by him. At the end of construction, he shall turn these drawings over to the Engineer. Record drawings must be completed and submitted prior to final site observation **PART 2 - PRODUCTS** (Not Used) **PART 3 - EXECUTION** (Not Used) **GENERAL REQUIREMENTS** September 2007 **END OF SECTION 15010** # SECTION 15050 - BASIC MECHANICAL MATERIALS AND METHODS #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Piping materials and installation instructions common to most piping systems. - 2. Transition fittings. - 3. Dielectric fittings. - 4. Mechanical sleeve seals. - 5. Sleeves. - 6. Escutcheons. - 7. Grout. - 8. Mechanical demolition. - 9. Equipment installation requirements common to equipment sections. - 10. Painting and finishing. - 11. Concrete bases. - 12. Supports and anchorages. #### 1.3 DEFINITIONS - A. Finished Spaces: Spaces other than mechanical and electrical equipment rooms, furred spaces, pipe and duct shafts, unheated spaces immediately below roof, spaces above ceilings, unexcavated spaces, crawlspaces, and tunnels. - B. Exposed, Interior Installations: Exposed to view indoors. Examples include finished occupied spaces and mechanical equipment rooms. - C. Exposed, Exterior Installations: Exposed to view outdoors or subject to outdoor ambient temperatures and weather conditions. Examples include rooftop locations. - D. Concealed, Interior Installations: Concealed from view and protected from physical contact by building occupants. Examples include above ceilings and in duct shafts. - E. Concealed, Exterior Installations: Concealed from view and protected from weather conditions and physical contact by building occupants but subject to outdoor ambient temperatures. Examples include installations within unheated shelters. - F. The following are industry abbreviations for plastic materials: - 1. ABS: Acrylonitrile-butadiene-styrene plastic. - 2. CPVC: Chlorinated polyvinyl chloride plastic. - 3. PVC: Polyvinyl chloride plastic. #### 1.4 SUBMITTALS - A. Product Data: For the following: - 1. Dielectric fittings. - 2. Mechanical sleeve seals. - B. Welding certificates. #### 1.5 QUALITY ASSURANCE - A. Steel Pipe Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX, "Welding and Brazing Qualifications." - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping." - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current. - B. All materials, piping, etc. shall be new, and <u>domestically</u> made of the best commercial quality obtainable, consistent with specified materials and for the purpose or function intended unless specifically approved in writing prior to bid. # 1.6 DELIVERY, STORAGE, AND HANDLING - A. Deliver pipes and tubes with factory-applied end caps. Maintain end caps through shipping, storage, and handling to prevent pipe end damage and to prevent entrance of dirt, debris, and moisture. - B. Store plastic pipes protected from direct sunlight. Support to prevent sagging and bending. #### 1.7 COORDINATION - A. Arrange for pipe spaces, chases, slots, and openings in building structure during progress of construction, to allow for mechanical installations. - B. Coordinate installation of required supporting devices and set sleeves in poured-inplace concrete and other structural components as they are constructed. - C. Coordinate requirements for access panels and doors for mechanical items requiring access that are concealed behind finished surfaces. #### **PART 2 - PRODUCTS** #### 2.1 MANUFACTURERS - A. In other Part 2 articles where subparagraph titles below introduce lists, the following requirements apply for product selection: - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, the manufacturers specified. - 2. Manufacturers: Subject to compliance with requirements, provide products by the manufacturers specified. # 2.2 PIPE, TUBE, AND FITTINGS - A. Refer to individual Division 15 piping Sections for pipe, tube, and fitting materials and joining methods. - B. Pipe Threads: ASME B1.20.1 for factory-threaded pipe and pipe fittings. #### 2.3 JOINING MATERIALS - A. Refer to individual Division 15 piping Sections for special joining materials not listed below. - B. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents. - 1. ASME B16.21, nonmetallic, flat, asbestos-free, 1/8-inch maximum thickness unless thickness or specific material is indicated. - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges. - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges. - 2. AWWA C110, rubber, flat face, 1/8 inch thick, unless otherwise indicated; and full-face or ring type, unless otherwise indicated. - C. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated. - D. Plastic, Pipe-Flange Gasket, Bolts, and Nuts: Type and material recommended by piping system manufacturer, unless otherwise indicated. - E. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813. - F. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for general-duty brazing, unless otherwise indicated; and AWS A5.8, BAg1, silver alloy for refrigerant piping, unless otherwise indicated. - G. Welding Filler Metals: Comply with AWS D10.12 for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded. - H. Solvent Cements for Joining Plastic Piping: - 1. ABS Piping: ASTM D 2235. - 2. CPVC Piping: ASTM F 493. - 3. PVC Piping: ASTM D 2564. Include primer according to ASTM F 656. - 4. PVC to ABS Piping Transition: ASTM D 3138. #### 2.4 DIELECTRIC FITTINGS - A. Description: Combination fitting of copper alloy and ferrous materials with threaded, solder-joint, plain, or weld-neck end connections that match piping system materials. - B. Insulating Material: Suitable for system fluid, pressure, and temperature. - C. Dielectric Unions: Factory-fabricated, union assembly, for 250-psig minimum working pressure at 180 deg F. - 1. Available Manufacturers: - a. Capitol Manufacturing Co. - b. Central Plastics Company. - c. Eclipse, Inc. - d. Epco Sales, Inc. - e. Hart Industries, International, Inc. - f. Watts Industries, Inc.; Water Products Div. - g. Zurn Industries, Inc.; Wilkins Div. - h. Prior Approved Equal. #### 2.5 ESCUTCHEONS - A. Description: Manufactured wall and ceiling escutcheons and floor plates, with an ID to closely fit around pipe, tube, and insulation of insulated piping and an OD that completely covers opening. - B. One-Piece, Stamped-Steel Type: With set screw or spring clips and chrome-plated finish. #### **PART 3 - EXECUTION** #### 3.1 MECHANICAL DEMOLITION - A.
Disconnect, demolish, and remove mechanical systems, equipment, and components indicated to be removed. - 1. Piping to Be Removed: Remove portion of piping indicated to be removed and cap or plug remaining piping with same or compatible piping material. - 2. Piping to Be Abandoned in Place: Drain piping and cap or plug piping with same or compatible piping material. - 3. Ducts to Be Removed: Remove portion of ducts indicated to be removed and plug remaining ducts with same or compatible ductwork material. - 4. Ducts to Be Abandoned in Place: Cap or plug ducts with same or compatible ductwork material. - 5. Equipment to Be Removed: Disconnect and cap services and remove equipment. - 6. Equipment to Be Removed and Reinstalled: Disconnect and cap services and remove, clean, and store equipment; when appropriate, reinstall, reconnect, and make equipment operational. - 7. Equipment to Be Removed and Salvaged: Disconnect and cap services and remove equipment and deliver to Owner. - B. If pipe, insulation, or equipment to remain is damaged in appearance or is unserviceable, remove damaged or unserviceable portions and replace with new products of equal capacity and quality. #### 3.2 PIPING SYSTEMS - COMMON REQUIREMENTS - A. Install piping according to the following requirements and Division 15 Sections specifying piping systems. - B. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Drawings do not show every offset, or bend that may be required. Indicated locations and arrangements were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings. - C. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas. - D. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise. - E. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal. - F. Install piping to permit valve servicing. - G. Install piping at indicated slopes. - H. Install piping free of sags and bends. - I. Install fittings for changes in direction and branch connections. - J. Install piping to allow application of insulation. - K. Select system components with pressure rating equal to or greater than system operating pressure. - L. Install escutcheons for penetrations of walls, ceilings, and floors where indicated on drawings and where penetrating will be visible to public. - M. Install sleeves for pipes passing through concrete and masonry walls, gypsum-board partitions, and concrete floor and roof slabs. - 1. Cut sleeves to length for mounting flush with both surfaces. - a. Exception: Extend sleeves installed in floors of mechanical equipment areas or other wet areas 2 inches above finished floor level. Extend castiron sleeve fittings below floor slab as required to secure clamping ring if ring is specified. - 2. Install sleeves in new walls and slabs as new walls and slabs are constructed. - 3. Install sleeves that are large enough to provide 1/4-inch annular clear space between sleeve and pipe or pipe insulation. Use the following sleeve materials: - 4. Except for underground wall penetrations, seal annular space between sleeve and pipe or pipe insulation, using joint sealants appropriate for size, depth, and location of joint. - N. Aboveground, Exterior-Wall Pipe Penetrations: Seal penetrations using sleeves and mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals. - O. Underground, Exterior-Wall Pipe Penetrations: Install cast-iron "wall pipes" for sleeves. Seal pipe penetrations using mechanical sleeve seals. Select sleeve size to allow for 1-inch annular clear space between pipe and sleeve for installing mechanical sleeve seals. - Mechanical Sleeve Seal Installation: Select type and number of sealing elements required for pipe material and size. Position pipe in center of sleeve. Assemble mechanical sleeve seals and install in annular space between pipe and sleeve. Tighten bolts against pressure plates that cause sealing elements to expand and make watertight seal. - P. Fire-Barrier Penetrations: Maintain indicated fire rating of walls, partitions, ceilings, and floors at pipe penetrations. Seal pipe penetrations with firestop materials. - Q. Verify final equipment locations for roughing-in. R. Refer to equipment specifications in other Sections of these Specifications for roughing-in requirements. #### 3.3 PIPING JOINT CONSTRUCTION - A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems. - B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe. - C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly. - D. Soldered Joints: Apply ASTM B 813, water-flushable flux, unless otherwise indicated, to tube end. Construct joints according to ASTM B 828 or CDA's "Copper Tube Handbook," using lead-free solder alloy complying with ASTM B 32. - E. Brazed Joints: Construct joints according to AWS's "Brazing Handbook," "Pipe and Tube" Chapter, using copper-phosphorus brazing filler metal complying with AWS A5.8. - F. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows: - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified. - 2. Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds. - G. Welded Joints: Construct joints according to AWS D10.12, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article. - H. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. - I. Plastic Piping Solvent-Cement Joints: Clean and dry joining surfaces. Join pipe and fittings according to the following: - 1. Comply with ASTM F 402 for safe-handling practice of cleaners, primers, and solvent cements. - 2. ABS Piping: Join according to ASTM D 2235 and ASTM D 2661 Appendixes. - 3. CPVC Piping: Join according to ASTM D 2846/D 2846M Appendix. - PVC Pressure Piping: Join schedule number ASTM D 1785, PVC pipe and PVC socket fittings according to ASTM D 2672. Join other-than-schedule-number PVC pipe and socket fittings according to ASTM D 2855. - 5. PVC Nonpressure Piping: Join according to ASTM D 2855. - 6. PVC to ABS Nonpressure Transition Fittings: Join according to ASTM D 3138 Appendix. - J. Plastic Nonpressure Piping Gasketed Joints: Join according to ASTM D 3212. #### 3.4 PIPING CONNECTIONS - A. Make connections according to the following, unless otherwise indicated: - 1. Install unions, in piping NPS 2 and smaller, adjacent to each valve and at final connection to each piece of equipment. - 2. Install flanges, in piping NPS 2-1/2 and larger, adjacent to flanged valves and at final connection to each piece of equipment. - 3. Dry Piping Systems: Install dielectric unions and flanges to connect piping materials of dissimilar metals. - 4. Wet Piping Systems: Install dielectric coupling and nipple fittings to connect piping materials of dissimilar metals. #### 3.5 EQUIPMENT INSTALLATION - COMMON REQUIREMENTS - A. Install equipment to allow maximum possible headroom unless specific mounting heights are not indicated. - B. Install equipment level and plumb, parallel and perpendicular to other building systems and components in exposed interior spaces, unless otherwise indicated. - C. Install mechanical equipment to facilitate service, maintenance, and repair or replacement of components. Connect equipment for ease of disconnecting, with minimum interference to other installations. Extend grease fittings to accessible locations. - D. Install equipment to allow right of way for piping installed at required slope. #### 3.6 PAINTING - A. Painting of mechanical systems, equipment, and components is specified in Division 9. - B. Damage and Touchup: Repair marred and damaged factory-painted finishes with materials and procedures to match original factory finish. **END OF SECTION 15050** # <u>SECTION 15074 - VIBRATION AND SEISMIC CONTROLS FOR HVAC PIPING AND EQUIPMENT</u> #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Seismic snubbers. - 2. Restraining braces and cables. #### 1.3 **DEFINITIONS** - A. IBC: International Building Code. - B. ICC-ES: ICC-Evaluation Service. #### 1.4 PERFORMANCE REQUIREMENTS - A. Wind-Restraint Loading: - 1. Basic Wind Speed: Per owner's design standards. - 2. Building Classification Category: As defined in the IBC. - 3. Minimum 10 lb/sq. ft. multiplied by the maximum area of the HVAC component projected on a vertical plane that is normal to the wind direction, and 45 degrees either side of normal. - B. Seismic-Restraint Loading: - 1. Site Class: As defined in the IBC. - 2. Assigned Seismic Use Group or Building Category: As defined in the IBC. - a. Component Importance Factor: 1.5. #### 1.5 SUBMITTALS A. Product Data: For the following: - 1. Include rated load, rated deflection, and overload capacity for each vibration isolation device. - 2. Illustrate and indicate style, material, strength, fastening
provision, and finish for each type and size of seismic-restraint component used. - a. Tabulate types and sizes of seismic restraints, complete with report numbers and rated strength in tension and shear as evaluated by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction. - b. Annotate to indicate application of each product submitted and compliance with requirements. - 3. Interlocking Snubbers: Include ratings for horizontal, vertical, and combined loads. - B. Delegated-Design Submittal: For vibration isolation and seismic-restraint details indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - 1. Design Calculations: Calculate static and dynamic loading due to equipment weight and operation, seismic and wind forces required to select vibration isolators, seismic and wind restraints, and for designing vibration isolation bases. - Coordinate design calculations with wind load calculations required for equipment mounted outdoors. Comply with requirements in other Division 15 Sections for equipment mounted outdoors. - 2. Riser Supports: Include riser diagrams and calculations showing anticipated expansion and contraction at each support point, initial and final loads on building structure, spring deflection changes, and seismic loads. Include certification that riser system has been examined for excessive stress and that none will exist. - 3. Vibration Isolation Base Details: Detail overall dimensions, including anchorages and attachments to structure and to supported equipment. Include auxiliary motor slides and rails, base weights, equipment static loads, power transmission, component misalignment, and cantilever loads. - 4. Seismic- and Wind-Restraint Details: - a. Design Analysis: To support selection and arrangement of seismic and wind restraints. Include calculations of combined tensile and shear loads. - b. Details: Indicate fabrication and arrangement. Detail attachments of restraints to the restrained items and to the structure. Show attachment locations, methods, and spacings. Identify components, list their strengths, and indicate directions and values of forces transmitted to the structure during seismic events. Indicate association with vibration isolation devices. - c. Coordinate seismic-restraint and vibration isolation details with windrestraint details required for equipment mounted outdoors. Comply with requirements in other Division 15 Sections for equipment mounted outdoors. - d. Preapproval and Evaluation Documentation: By an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction, showing maximum ratings of restraint items and the basis for approval (tests or calculations). - C. Coordination Drawings: Show coordination of seismic bracing for HVAC piping and equipment with other systems and equipment in the vicinity, including other supports and seismic restraints. - D. Welding certificates. - E. Qualification Data: For professional engineer and testing agency. - F. Field quality-control test reports. #### 1.6 QUALITY ASSURANCE - A. Testing Agency Qualifications: An independent agency, with the experience and capability to conduct the testing indicated, that is a nationally recognized testing laboratory (NRTL) as defined by OSHA in 29 CFR 1910.7, and that is acceptable to authorities having jurisdiction. - B. Comply with seismic-restraint requirements in the IBC unless requirements in this Section are more stringent. - C. Welding: Qualify procedures and personnel according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - D. Seismic-restraint devices shall have horizontal and vertical load testing and analysis and shall bear anchorage preapproval OPA number from OSHPD, preapproval by ICC-ES, or preapproval by another agency acceptable to authorities having jurisdiction, showing maximum seismic-restraint ratings. Ratings based on independent testing are preferred to ratings based on calculations. If preapproved ratings are not available, submittals based on independent testing are preferred. Calculations (including combining shear and tensile loads) to support seismic-restraint designs must be signed and sealed by a qualified professional engineer. #### **PART 2 - PRODUCTS** #### 2.1 SEISMIC-RESTRAINT DEVICES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Amber/Booth Company, Inc. - 2. Hilti, Inc. - 3. Kinetics Noise Control. - 4. Mason Industries. - 5. Unistrut; Tyco International, Ltd. - 6. Prior approved equal. - B. General Requirements for Restraint Components: Rated strengths, features, and applications shall be as defined in reports by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction. - 1. Structural Safety Factor: Allowable strength in tension, shear, and pullout force of components shall be at least four times the maximum seismic forces to which they will be subjected. - C. Snubbers: Factory fabricated using welded structural-steel shapes and plates, anchor bolts, and replaceable resilient isolation washers and bushings. - 1. Anchor bolts for attaching to concrete shall be seismic-rated, drill-in, and studwedge or female-wedge type. - 2. Resilient Isolation Washers and Bushings: Oil- and water-resistant neoprene. - 3. Maximum 1/4-inch air gap, and minimum 1/4-inch- thick resilient cushion. - D. Channel Support System: MFMA-3, shop- or field-fabricated support assembly made of slotted steel channels with accessories for attachment to braced component at one end and to building structure at the other end and other matching components and with corrosion-resistant coating; and rated in tension, compression, and torsion forces. - E. Restraint Cables: -steel cables with end connections made of steel assemblies with thimbles, brackets, swivel, and bolts designed for restraining cable service; and with a minimum of two clamping bolts for cable engagement. - F. Hanger Rod Stiffener: Steel tube or steel slotted-support-system sleeve with internally bolted connections or Reinforcing steel angle clamped to hanger rod. - G. Bushings for Floor-Mounted Equipment Anchor Bolts: Neoprene bushings designed for rigid equipment mountings, and matched to type and size of anchor bolts and studs. - H. Bushing Assemblies for Wall-Mounted Equipment Anchorage: Assemblies of neoprene elements and steel sleeves designed for rigid equipment mountings, and matched to type and size of attachment devices used. - I. Resilient Isolation Washers and Bushings: One-piece, molded, oil- and water-resistant neoprene, with a flat washer face. - J. Mechanical Anchor Bolts: Drilled-in and stud-wedge or female-wedge type in zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. Minimum length of eight times diameter. - K. Adhesive Anchor Bolts: Drilled-in and capsule anchor system containing polyvinyl or urethane methacrylate-based resin and accelerator, or injected polymer or hybrid mortar adhesive. Provide anchor bolts and hardware with zinc-coated steel for interior applications and stainless steel for exterior applications. Select anchor bolts with strength required for anchor and as tested according to ASTM E 488. #### 2.2 FACTORY FINISHES - A. Finish: Manufacturer's standard paint applied to factory-assembled and -tested equipment before shipping. - 1. Powder coating on springs and housings. - 2. All hardware shall be galvanized. Hot-dip galvanize metal components for exterior use. - 3. Baked enamel or powder coat for metal components on isolators for interior use. - 4. Color-code or otherwise mark vibration isolation and seismic- and wind-control devices to indicate capacity range. # **PART 3 - EXECUTION** #### 3.1 EXAMINATION - A. Examine areas and equipment to receive vibration isolation and seismic- and windcontrol devices for compliance with requirements for installation tolerances and other conditions affecting performance. - B. Examine roughing-in of reinforcement and cast-in-place anchors to verify actual locations before installation. - C. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 APPLICATIONS - A. Multiple Pipe Supports: Secure pipes to trapeze member with clamps approved for application by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction. - B. Hanger Rod Stiffeners: Install hanger rod stiffeners where indicated or scheduled on Drawings to receive them and where required to prevent buckling of hanger rods due to seismic forces. - C. Strength of Support and Seismic-Restraint Assemblies: Where not indicated, select sizes of components so strength will be adequate to carry present and future static and seismic loads within specified loading limits. #### 3.3 VIBRATION-CONTROL AND SEISMIC-RESTRAINT DEVICE INSTALLATION - A. Comply with requirements in Division 7 Section "Roof Accessories" for installation of roof curbs, equipment supports, and roof penetrations. - B. Equipment Restraints: - 1. Install seismic snubbers on HVAC equipment mounted on vibration isolators. Locate snubbers as close as possible to vibration isolators and bolt to equipment base and supporting structure. - 2. Install resilient bolt isolation washers on equipment anchor bolts where clearance between anchor and adjacent surface exceeds 0.125 inch. - 3. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction providing required submittals for component. # C. Piping Restraints: - 1. Comply with requirements in MSS SP-127. - 2. Space lateral supports a maximum of 40 feet o.c., and longitudinal
supports a maximum of 80 feet o.c. - 3. Brace a change of direction longer than 12 feet. - D. Install cables so they do not bend across edges of adjacent equipment or building structure. - E. Install seismic-restraint devices using methods approved by an evaluation service member of ICC-ES or an agency acceptable to authorities having jurisdiction providing required submittals for component. - F. Install bushing assemblies for anchor bolts for floor-mounted equipment, arranged to provide resilient media between anchor bolt and mounting hole in concrete base. - G. Install bushing assemblies for mounting bolts for wall-mounted equipment, arranged to provide resilient media where equipment or equipment-mounting channels are attached to wall. - H. Attachment to Structure: If specific attachment is not indicated, anchor bracing to structure at flanges of beams, at upper truss chords of bar joists, or at concrete members. #### I. Drilled-in Anchors: - Identify position of reinforcing steel and other embedded items prior to drilling holes for anchors. Do not damage existing reinforcing or embedded items during coring or drilling. Notify the structural engineer if reinforcing steel or other embedded items are encountered during drilling. Locate and avoid prestressed tendons, electrical and telecommunications conduit, and gas lines. - 2. Do not drill holes in concrete or masonry until concrete, mortar, or grout has achieved full design strength. - 3. Wedge Anchors: Protect threads from damage during anchor installation. Heavy-duty sleeve anchors shall be installed with sleeve fully engaged in the structural element to which anchor is to be fastened. - 4. Adhesive Anchors: Clean holes to remove loose material and drilling dust prior to installation of adhesive. Place adhesive in holes proceeding from the bottom of the hole and progressing toward the surface in such a manner as to avoid introduction of air pockets in the adhesive. - 5. Set anchors to manufacturer's recommended torque, using a torque wrench. - 6. Install zinc-coated steel anchors for interior and stainless-steel anchors for exterior applications. #### 3.4 ACCOMMODATION OF DIFFERENTIAL SEISMIC MOTION A. Install flexible connections in piping where they cross seismic joints, where adjacent sections or branches are supported by different structural elements, and where the connections terminate with connection to equipment that is anchored to a different structural element from the one supporting the connections as they approach equipment. Comply with requirements in Division 15 Section "Hydronic Piping" for piping flexible connections. #### 3.5 FIELD QUALITY CONTROL - A. Testing Agency: Leave a qualified testing agency to perform tests and inspections. - B. Perform tests and inspections. - C. Tests and Inspections: - 1. Provide evidence of recent calibration of test equipment by a testing agency acceptable to authorities having jurisdiction. - 2. Schedule test with Owner, through Architect, before connecting anchorage device to restrained component (unless postconnection testing has been approved), and with at least seven days' advance notice. - 3. Obtain Architect's approval before transmitting test loads to structure. Provide temporary load-spreading members. - 4. Test at least four of each type and size of installed anchors and fasteners selected by Architect. - 5. Test to 90 percent of rated proof load of device. - 6. Measure isolator restraint clearance. - 7. Measure isolator deflection. - 8. Verify snubber minimum clearances. - 9. If a device fails test, modify all installations of same type and retest until satisfactory results are achieved. - D. Remove and replace malfunctioning units and retest as specified above. - E. Prepare test and inspection reports. #### 3.6 ADJUSTING - A. Adjust isolators after piping system is at operating weight. - B. Adjust limit stops on restrained spring isolators to mount equipment at normal operating height. After equipment installation is complete, adjust limit stops so they are out of contact during normal operation. - C. Adjust air-spring leveling mechanism. - D. Adjust active height of spring isolators. - E. Adjust restraints to permit free movement of equipment within normal mode of operation. # 3.7 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain air-mounting systems. Refer to Division 1 Section "Demonstration and Training." **END OF SECTION 15074** #### **SECTION 15075 - MECHANICAL IDENTIFICATION** #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following mechanical identification materials and their installation: - 1. Equipment nameplates. - 2. Equipment signs. - 3. Access panel and door markers. - 4. Pipe markers. - Warning tags. #### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. - B. Samples: For color, letter style, and graphic representation required for each identification material and device. - C. Valve numbering scheme. - D. Valve Schedules: For each piping system. Furnish extra copies (in addition to mounted copies) to include in maintenance manuals. # 1.4 QUALITY ASSURANCE A. ASME Compliance: Comply with ASME A13.1, "Scheme for the Identification of Piping Systems," for letter size, length of color field, colors, and viewing angles of identification devices for piping. #### 1.5 COORDINATION - A. Coordinate installation of identifying devices with completion of covering and painting of surfaces where devices are to be applied. - B. Coordinate installation of identifying devices with location of access panels and doors. C. Install identifying devices before installing acoustical ceilings and similar concealment. #### PART 2 - PRODUCTS #### 2.1 EQUIPMENT IDENTIFICATION DEVICES - A. Equipment Nameplates: Metal, with data engraved or stamped, for permanent attachment on equipment. - 1. Data: - a. Manufacturer, product name, model number, and serial number. - b. Capacity, operating and power characteristics, and essential data. - c. Labels of tested compliances. - 2. Location: Accessible and visible. - 3. Fasteners: As required to mount on equipment. - B. Equipment Signs: ASTM D 709, Type I, cellulose, paper-base, phenolic-resin-laminate engraving stock; Grade ES-2, black surface, black phenolic core, with white melamine subcore, unless otherwise indicated. Fabricate in sizes required for message. Provide holes for mechanical fastening. - 1. Data: Instructions for operation of equipment and for safety procedures. - 2. Engraving: Manufacturer's standard letter style, 1/4" or larger with terms to match equipment identification. - 3. Thickness: 1/8 inch, unless otherwise indicated. - 4. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive. - C. Access Panel and Door Markers: 1/16" thick, engraved laminated plastic, with abbreviated terms and numbers corresponding to identification. Provide 1/8" center hole for attachment. - 1. Fasteners: Self-tapping, stainless-steel screws or contact-type, permanent adhesive. #### 2.2 PIPING IDENTIFICATION DEVICES - A. Manufactured Pipe Markers, General: Preprinted, color-coded, with lettering indicating service, and showing direction of flow. - 1. Colors: Comply with ASME A13.1, unless otherwise indicated. - 2. Lettering: Use piping system terms indicated and abbreviate only as necessary for each application length. - 3. Pipes with OD, Including Insulation, Less Than 6 Inches: Full-band pipe markers extending 360 degrees around pipe at each location. - 4. Pipes with OD, Including Insulation, 6 Inches and Larger: Either full-band or strip-type pipe markers at least three times letter height and of length required for label. - 5. Arrows: Integral with piping system service lettering to accommodate both directions; or as separate unit on each pipe marker to indicate direction of flow. - B. Self-Adhesive Pipe Markers: Plastic with pressure-sensitive, permanent-type, self-adhesive back. # **PART 3 - EXECUTION** # 3.1 APPLICATIONS, GENERAL A. Products specified are for applications referenced in other Division 15 Sections. If more than single-type material, device, or label is specified for listed applications, selection is Installer's option. #### 3.2 EQUIPMENT IDENTIFICATION - A. Install and permanently fasten equipment nameplates on each major item of mechanical equipment that does not have nameplate or has nameplate that is damaged or located where not easily visible. Locate nameplates where accessible and visible. Include nameplates for the following general categories of equipment: - 1. Fuel-burning units, including boilers, furnaces, heaters, etc. - 2. Pumps, compressors, chillers, condensers, and similar motor-driven units. - 3. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment. - 4. Fans, blowers, primary balancing dampers, and mixing boxes. - 5. Packaged HVAC central-station and zone-type units. - B. Install equipment signs with screws or permanent adhesive on or near each major item of mechanical equipment. Locate signs where accessible and visible. - 1. Identify mechanical equipment with black equipment markers with white lettering. - 2. Letter Size: Minimum 1/4 inch for name of units if viewing distance is less than 24 inches, 1/2 inch for viewing distances up to 72 inches, and proportionately larger lettering for greater viewing distances. Include secondary lettering two-thirds to three-fourths the size of principal lettering. - 3. Data: Distinguish among multiple units, indicate operational requirements, indicate safety and emergency precautions, warn of hazards and improper operations, and identify units. - 4. Include signs for the following general categories of
equipment: - a. Main control and operating valves, including safety devices and hazardous units such as gas outlets. - b. Fuel-burning units, including boilers, furnaces, heaters, etc. - c. Pumps, compressors, chillers, condensers, and similar motor-driven units. - d. Heat exchangers, coils, evaporators, cooling towers, heat recovery units, and similar equipment. - e. Fans, blowers, primary balancing dampers, and mixing boxes. - f. Packaged HVAC central-station and zone-type units. - g. Tanks and pressure vessels. - h. Strainers, filters, humidifiers, water-treatment systems, and similar equipment. - C. Install access panel markers with screws on equipment access panels. # 3.3 PIPING IDENTIFICATION - A. Install manufactured pipe markers indicating service on each piping system. Install with flow indication arrows showing direction of flow. - B. Stenciled Pipe Marker Option: Stenciled markers may be provided instead of manufactured pipe markers, at Installer's option. Install stenciled pipe markers with painted, color-coded bands or rectangles complying with ASME A13.1] on each piping system. - 1. Identification Paint: Use for contrasting background. - 2. Stencil Paint: Use for pipe marking. - C. Locate pipe markers and color bands where piping is exposed in finished spaces; machine rooms; accessible maintenance spaces such as shafts, tunnels, and plenums; and exterior nonconcealed locations as follows: - 1. Near each valve and control device. - 2. Near each branch connection, excluding short takeoffs for fixtures and terminal units. Where flow pattern is not obvious, mark each pipe at branch. - 3. Near penetrations through walls, floors, ceilings, and nonaccessible enclosures. - 4. At access doors, manholes, and similar access points that permit view of concealed piping. - 5. Near major equipment items and other points of origination and termination. - 6. Spaced at maximum intervals of 50 feet along each run. Reduce intervals to 25 feet in areas of congested piping and equipment. - 7. On piping above removable acoustical ceilings. Omit intermediately spaced markers. # 3.4 ADJUSTING A. Relocate mechanical identification materials and devices that have become visually blocked by other work. # 3.5 CLEANING A. Clean faces of mechanical identification devices and glass frames of valve schedules. September 2007 **END OF SECTION 15075** # **SECTION 15083 - HVAC INSULATION** #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. Section Includes: - 1. Insulation Materials: - a. Mineral fiber. - 2. Insulating cements. - 3. Adhesives. - 4. Lagging adhesives. - 5. Factory-applied jackets. - 6. Field-applied jackets. - 7. Tapes. - 8. Securements. - 9. Corner angles. - B. Related Sections: - 1. Division 15 Section "Metal Ducts" for duct liners. #### 1.3 SUBMITTALS - A. Product Data: For each type of product indicated. Include thermal conductivity, thickness, and jackets (both factory and field applied, if any). - B. Qualification Data: For qualified Installer. - C. Material Test Reports: From a qualified testing agency acceptable to authorities having jurisdiction indicating, interpreting, and certifying test results for compliance of insulation materials, sealers, attachments, cements, and jackets, with requirements indicated. Include dates of tests and test methods employed. - D. Field quality-control reports. # 1.4 QUALITY ASSURANCE - A. Installer Qualifications: Skilled mechanics who have successfully completed an apprenticeship program or another craft training program certified by the Department of Labor, Bureau of Apprenticeship and Training. - B. Fire-Test-Response Characteristics: Insulation and related materials shall have fire-test-response characteristics indicated, as determined by testing identical products per ASTM E 84, by a testing and inspecting agency acceptable to authorities having jurisdiction. Factory label insulation and jacket materials and adhesive, mastic, tapes, and cement material containers, with appropriate markings of applicable testing and inspecting agency. - 1. Insulation Installed Indoors: Flame-spread index of 25 or less, and smoke-developed index of 50 or less. - 2. Insulation Installed Outdoors: Flame-spread index of 75 or less, and smoke-developed index of 150 or less. # 1.5 DELIVERY, STORAGE, AND HANDLING A. Packaging: Insulation material containers shall be marked by manufacturer with appropriate ASTM standard designation, type and grade, and maximum use temperature. #### 1.6 COORDINATION - A. Coordinate size and location of supports, hangers, and insulation shields specified in Division 15 Section "Hangers and Supports." - B. Coordinate clearance requirements with piping Installer for piping insulation application, duct Installer for duct insulation application, and equipment Installer for equipment insulation application. Before preparing piping and ductwork Shop Drawings, establish and maintain clearance requirements for installation of insulation and field-applied jackets and finishes and for space required for maintenance. - C. Coordinate installation and testing of heat tracing. #### 1.7 SCHEDULING - A. Schedule insulation application after pressure testing systems and, where required, after installing and testing heat tracing. Insulation application may begin on segments that have satisfactory test results. - B. Complete installation and concealment of plastic materials as rapidly as possible in each area of construction. # **PART 2 - PRODUCTS** #### 2.1 INSULATION MATERIALS - A. Comply with requirements in Part 3 schedule articles for where insulating materials shall be applied. - B. Products shall not contain asbestos, lead, mercury, or mercury compounds. - C. Products that come in contact with stainless steel shall have a leachable chloride content of less than 50 ppm when tested according to ASTM C 871. - D. Insulation materials for use on austenitic stainless steel shall be qualified as acceptable according to ASTM C 795. - E. Foam insulation materials shall not use CFC or HCFC blowing agents in the manufacturing process. - F. Mineral-Fiber Blanket Insulation: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 553, Type II and ASTM C 1290, Type I. Factory-applied jacket requirements are specified in "Factory-Applied Jackets" Article. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. CertainTeed Corp.; Duct Wrap. - b. Johns Manville; Microlite. - c. Knauf Insulation; Duct Wrap. - d. Manson Insulation Inc.; Alley Wrap. - e. Owens Corning; All-Service Duct Wrap. - f. Prior approved equal. - G. Mineral-Fiber, Preformed Pipe Insulation: - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Fibrex Insulations Inc.; Coreplus 1200. - b. Johns Manville: Micro-Lok. - c. Knauf Insulation; 1000 Pipe Insulation. - d. Manson Insulation Inc.; Alley-K. - e. Owens Corning; Fiberglas Pipe Insulation. - f. Prior approved equal. - 2. Type I, 850 deg F Materials: Mineral or glass fibers bonded with a thermosetting resin. Comply with ASTM C 547, Type I, Grade A. a. # 2.2 INSULATING CEMENTS A. Mineral-Fiber Insulating Cement: Comply with ASTM C 195. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Insulco, Division of MFS, Inc.; Triple I. - b. P. K. Insulation Mfg. Co., Inc.; Super-Stik. - c. Prior approved equal. # 2.3 ADHESIVES - A. Materials shall be compatible with insulation materials, jackets, and substrates and for bonding insulation to itself and to surfaces to be insulated, unless otherwise indicated. - B. Calcium Silicate Adhesive: Fibrous, sodium-silicate-based adhesive with a service temperature range of 50 to 800 deg F. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products, Division of ITW; CP-97. - b. Foster Products Corporation, H. B. Fuller Company; 81-27/81-93. - c. Marathon Industries, Inc.; 290. - d. Mon-Eco Industries, Inc.; 22-30. - e. Vimasco Corporation; 760. - f. Prior approved equal. - C. Flexible Elastomeric Adhesive: Comply with MIL-A-24179A, Type II, Class I. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Aeroflex USA Inc.; Aeroseal. - b. Armacell LCC; 520 Adhesive. - c. Foster Products Corporation, H. B. Fuller Company; 85-75. - d. RBX Corporation; Rubatex Contact Adhesive. - e. Prior approved equal. - D. Mineral-Fiber Adhesive: Comply with MIL-A-3316C, Class 2, Grade A. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products, Division of ITW; CP-82. - b. Foster Products Corporation, H. B. Fuller Company; 85-20. - c. ITW TACC, Division of Illinois Tool Works; S-90/80. - d. Marathon Industries, Inc.; 225. - e. Mon-Eco Industries, Inc.; 22-25. - f. Prior approved equal. - E. PVC Jacket Adhesive: Compatible with PVC jacket. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Dow Chemical Company (The); 739, Dow Silicone. - b. Johns-Manville; Zeston Perma-Weld, CEEL-TITE Solvent Welding Adhesive. - c. P.I.C. Plastics, Inc.; Welding Adhesive. - d. Red Devil, Inc.; Celulon Ultra Clear. - e. Speedline Corporation; Speedline Vinyl Adhesive. - f. Prior approved equal. # 2.4 LAGGING ADHESIVES - A. Description: Comply with MIL-A-3316C Class I, Grade A and shall be compatible with insulation materials, jackets, and substrates. - 1. Products: Subject to compliance
with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products, Division of ITW; CP-52. - b. Foster Products Corporation, H. B. Fuller Company; 81-42. - c. Marathon Industries, Inc.; 130. - d. Mon-Eco Industries, Inc.; 11-30. - e. Vimasco Corporation; 136. - f. Prior approved equal. - 2. Fire-resistant, water-based lagging adhesive and coating for use indoors to adhere fire-resistant lagging cloths over duct, equipment, and pipe insulation. - 3. Service Temperature Range: Minus 50 to plus 180 deg F. - 4. Color: White. #### 2.5 FACTORY-APPLIED JACKETS - A. Insulation system schedules indicate factory-applied jackets on various applications. When factory-applied jackets are indicated, comply with the following: - 1. ASJ: White, kraft-paper, fiberglass-reinforced scrim with aluminum-foil backing; complying with ASTM C 1136, Type I. - 2. ASJ-SSL: ASJ with self-sealing, pressure-sensitive, acrylic-based adhesive covered by a removable protective strip; complying with ASTM C 1136, Type I. - 3. FSK Jacket: Aluminum-foil, fiberglass-reinforced scrim with kraft-paper backing; complying with ASTM C 1136, Type II. - 4. FSP Jacket: Aluminum-foil, fiberglass-reinforced scrim with polyethylene backing; complying with ASTM C 1136, Type II. - 5. PVDC Jacket for Indoor Applications: 4-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.02 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 20 when tested according to ASTM E 84. - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film. - 2) Prior approved equal. - 6. PVDC Jacket for Outdoor Applications: 6-mil- thick, white PVDC biaxially oriented barrier film with a permeance at 0.01 perms when tested according to ASTM E 96 and with a flame-spread index of 5 and a smoke-developed index of 25 when tested according to ASTM E 84. - a. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - 1) Dow Chemical Company (The); Saran 540 Vapor Retarder Film and Saran 560 Vapor Retarder Film. - 2) Prior approved equal. - 7. Vinyl Jacket: White vinyl with a permeance of 1.3 perms when tested according to ASTM E 96, Procedure A, and complying with NFPA 90A and NFPA 90B. #### 2.6 FIELD-APPLIED JACKETS - A. Field-applied jackets shall comply with ASTM C 921, Type I, unless otherwise indicated. - B. FSK Jacket: Aluminum-foil-face, fiberglass-reinforced scrim with kraft-paper backing. - C. PVC Jacket: High-impact-resistant, UV-resistant PVC complying with ASTM D 1784, Class 16354-C; thickness as scheduled; roll stock ready for shop or field cutting and forming. Thickness is indicated in field-applied jacket schedules. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Johns Manville; Zeston. - b. P.I.C. Plastics, Inc.; FG Series. - c. Proto PVC Corporation; LoSmoke. - d. Speedline Corporation; SmokeSafe. - e. Prior approved equal. - 2. Adhesive: As recommended by jacket material manufacturer. - 3. Color: Color-code jackets based on system. Color as selected by Architect. - 4. Factory-fabricated fitting covers to match jacket if available; otherwise, field fabricate. - a. Shapes: 45- and 90-degree, short- and long-radius elbows, tees, valves, flanges, unions, reducers, end caps, soil-pipe hubs, traps, mechanical joints, and P-trap and supply covers for lavatories. - 5. Factory-fabricated tank heads and tank side panels. #### D. Metal Jacket: - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products, Division of ITW; Metal Jacketing Systems. - b. PABCO Metals Corporation: Surefit. - c. RPR Products, Inc.; Insul-Mate. - d. Prior approved equal. - 2. Aluminum Jacket: Comply with ASTM B 209, Alloy 3003, 3005, 3105 or 5005, Temper H-14. - a. Sheet and roll stock ready for shop or field sizing. - b. Finish and thickness are indicated in field-applied jacket schedules. - c. Moisture Barrier for Indoor Applications: 1-mil- thick, heat-bonded polyethylene and kraft paper. - d. Moisture Barrier for Outdoor Applications: 3-mil- thick, heat-bonded polyethylene and kraft paper. - e. Factory-Fabricated Fitting Covers: - 1) Same material, finish, and thickness as jacket. - 2) Preformed 2-piece or gore, 45- and 90-degree, short- and long-radius elbows. - 3) Tee covers. - 4) Flange and union covers. - 5) End caps. - 6) Beveled collars. - 7) Valve covers. - 8) Field fabricate fitting covers only if factory-fabricated fitting covers are not available. # 2.7 TAPES - A. ASJ Tape: White vapor-retarder tape matching factory-applied jacket with acrylic adhesive, complying with ASTM C 1136. - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0835. - b. Compac Corp.; 104 and 105. - c. Ideal Tape Co., Inc., an American Biltrite Company; 428 AWF ASJ. - d. Venture Tape; 1540 CW Plus, 1542 CW Plus, and 1542 CW Plus/SQ. - e. Prior approved equal. - 2. Width: 3 inches. - 3. Thickness: 11.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. ASJ Tape Disks and Squares: Precut disks or squares of ASJ tape. - B. FSK Tape: Foil-face, vapor-retarder tape matching factory-applied jacket with acrylic adhesive; complying with ASTM C 1136. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0827. - b. Compac Corp.; 110 and 111. - c. Ideal Tape Co., Inc., an American Biltrite Company; 491 AWF FSK. - d. Venture Tape; 1525 CW, 1528 CW, and 1528 CW/SQ. - e. Prior approved equal. - 2. Width: 3 inches. - 3. Thickness: 6.5 mils. - 4. Adhesion: 90 ounces force/inch in width. - 5. Elongation: 2 percent. - 6. Tensile Strength: 40 lbf/inch in width. - 7. FSK Tape Disks and Squares: Precut disks or squares of FSK tape. - C. PVC Tape: White vapor-retarder tape matching field-applied PVC jacket with acrylic adhesive. Suitable for indoor and outdoor applications. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0555. - b. Compac Corp.; 130. - c. Ideal Tape Co., Inc., an American Biltrite Company; 370 White PVC tape. - d. Venture Tape; 1506 CW NS. - e. Prior approved equal. - 2. Width: 2 inches. - 3. Thickness: 6 mils. - 4. Adhesion: 64 ounces force/inch in width. - 5. Elongation: 500 percent. - 6. Tensile Strength: 18 lbf/inch in width. - D. Aluminum-Foil Tape: Vapor-retarder tape with acrylic adhesive. - 1. Products: Subject to compliance with requirements, provide one of the following: - a. Avery Dennison Corporation, Specialty Tapes Division; Fasson 0800. - b. Compac Corp.; 120. - c. Ideal Tape Co., Inc., an American Biltrite Company; 488 AWF. - d. Venture Tape; 3520 CW. - e. Prior approved equal. Width: 2 inches. Thickness: 3.7 mils. 4. Adhesion: 100 ounces force/inch in width. 5. Elongation: 5 percent. 6. Tensile Strength: 34 lbf/inch in width. #### 2.8 SECUREMENTS #### A. Bands: - 1. Products: Subject to compliance with requirements, available products that may be incorporated into the Work include, but are not limited to, the following: - a. Childers Products; Bands. - b. PABCO Metals Corporation; Bands. - c. RPR Products, Inc.; Bands. - d. Prior approved equal. - 2. Stainless Steel: ASTM A 167 or ASTM A 240/A 240M, Type 304 or Type 316; 0.015 inch thick, 1/2 inch wide. - 3. Aluminum: ASTM B 209, Alloy 3003, 3005, 3105, or 5005; Temper H-14, 0.020 inch thick, 1/2 inch wide. - 4. Springs: Twin spring set constructed of stainless steel with ends flat and slotted to accept metal bands. Spring size determined by manufacturer for application. # 2.9 CORNER ANGLES - A. PVC Corner Angles: 30 mils thick, minimum 1 by 1 inch, PVC according to ASTM D 1784, Class 16354-C. White or color-coded to match adjacent surface. - B. Aluminum Corner Angles: 0.040 inch thick, minimum 1 by 1 inch, aluminum according to ASTM B 209, Alloy 3003, 3005, 3105 or 5005; Temper H-14. - C. Stainless-Steel Corner Angles: 0.024 inch thick, minimum 1 by 1 inch, stainless steel according to ASTM A 167 or ASTM A 240/A 240M, Type 304 or 316. #### **PART 3 - EXECUTION** #### 3.1 EXAMINATION A. Examine substrates and conditions for compliance with requirements for installation and other conditions affecting performance of insulation application. - 1. Verify that systems and equipment to be insulated have been tested and are free of defects. - 2. Verify that surfaces to be insulated are clean and dry. - 3. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 PREPARATION - A. Surface Preparation: Clean and dry surfaces to receive insulation. Remove materials that will adversely affect insulation application. - B. Surface Preparation: Clean and prepare surfaces to be insulated. Before insulating, apply a corrosion coating to insulated surfaces as follows: - Stainless Steel: Coat 300 series stainless steel with an epoxy primer 5 mils thick and an epoxy finish 5 mils thick if operating in a temperature range between 140 and 300 deg F. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range. - Carbon Steel: Coat carbon steel operating at a
service temperature between 32 and 300 deg F with an epoxy coating. Consult coating manufacturer for appropriate coating materials and application methods for operating temperature range. - C. Coordinate insulation installation with the trade installing heat tracing. Comply with requirements for heat tracing that apply to insulation. - D. Mix insulating cements with clean potable water; if insulating cements are to be in contact with stainless-steel surfaces, use demineralized water. # 3.3 GENERAL INSTALLATION REQUIREMENTS - A. Install insulation materials, accessories, and finishes with smooth, straight, and even surfaces; free of voids throughout the length of equipment, ducts and fittings, and piping including fittings, valves, and specialties. - B. Install insulation materials, forms, vapor barriers or retarders, jackets, and thicknesses required for each item of equipment, duct system, and pipe system as specified in insulation system schedules. - C. Install accessories compatible with insulation materials and suitable for the service. Install accessories that do not corrode, soften, or otherwise attack insulation or jacket in either wet or dry state. - D. Install insulation with longitudinal seams at top and bottom of horizontal runs. - E. Install multiple layers of insulation with longitudinal and end seams staggered. - F. Do not weld brackets, clips, or other attachment devices to piping, fittings, and specialties. - G. Keep insulation materials dry during application and finishing. - H. Install insulation with tight longitudinal seams and end joints. Bond seams and joints with adhesive recommended by insulation material manufacturer. - I. Install insulation with least number of joints practical. - J. Where vapor barrier is indicated, seal joints, seams, and penetrations in insulation at hangers, supports, anchors, and other projections with vapor-barrier mastic. - 1. Install insulation continuously through hangers and around anchor attachments. - For insulation application where vapor barriers are indicated, extend insulation on anchor legs from point of attachment to supported item to point of attachment to structure. Taper and seal ends at attachment to structure with vapor-barrier mastic. - 3. Install insert materials and install insulation to tightly join the insert. Seal insulation to insulation inserts with adhesive or sealing compound recommended by insulation material manufacturer. - 4. Cover inserts with jacket material matching adjacent pipe insulation. Install shields over jacket, arranged to protect jacket from tear or puncture by hanger, support, and shield. - K. Apply adhesives, mastics, and sealants at manufacturer's recommended coverage rate and wet and dry film thicknesses. - L. Install insulation with factory-applied jackets as follows: - 1. Draw jacket tight and smooth. - 2. Cover circumferential joints with 3-inch- wide strips, of same material as insulation jacket. Secure strips with adhesive and outward clinching staples along both edges of strip, spaced 4 inches o.c. - 3. Overlap jacket longitudinal seams at least 1-1/2 inches. Install insulation with longitudinal seams at bottom of pipe. Clean and dry surface to receive self-sealing lap. Staple laps with outward clinching staples along edge at 2 inches o.c. - a. For below ambient services, apply vapor-barrier mastic over staples. - 4. Cover joints and seams with tape as recommended by insulation material manufacturer to maintain vapor seal. - 5. Where vapor barriers are indicated, apply vapor-barrier mastic on seams and joints and at ends adjacent to duct and pipe flanges and fittings. - M. Cut insulation in a manner to avoid compressing insulation more than 75 percent of its nominal thickness. - N. Finish installation with systems at operating conditions. Repair joint separations and cracking due to thermal movement. - O. Repair damaged insulation facings by applying same facing material over damaged areas. Extend patches at least 4 inches beyond damaged areas. Adhere, staple, and seal patches similar to butt joints. - P. For above ambient services, do not install insulation to the following: - 1. Vibration-control devices. - 2. Testing agency labels and stamps. - 3. Nameplates and data plates. - Manholes. - 5. Handholes. - 6. Cleanouts. #### 3.4 PENETRATIONS - A. Insulation Installation at Roof Penetrations: Install insulation continuously through roof penetrations. - 1. Seal penetrations with flashing sealant. - 2. For applications requiring only indoor insulation, terminate insulation above roof surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant. - 3. Extend jacket of outdoor insulation outside roof flashing at least 2 inches below top of roof flashing. - 4. Seal jacket to roof flashing with flashing sealant. - B. Insulation Installation at Underground Exterior Wall Penetrations: Terminate insulation flush with sleeve seal. Seal terminations with flashing sealant. - C. Insulation Installation at Aboveground Exterior Wall Penetrations: Install insulation continuously through wall penetrations. - 1. Seal penetrations with flashing sealant. - 2. For applications requiring only indoor insulation, terminate insulation inside wall surface and seal with joint sealant. For applications requiring indoor and outdoor insulation, install insulation for outdoor applications tightly joined to indoor insulation ends. Seal joint with joint sealant. - 3. Extend jacket of outdoor insulation outside wall flashing and overlap wall flashing at least 2 inches. - 4. Seal jacket to wall flashing with flashing sealant. - D. Insulation Installation at Interior Wall and Partition Penetrations (That Are Not Fire Rated): Install insulation continuously through walls and partitions. - E. Insulation Installation at Fire-Rated Wall and Partition Penetrations: Install insulation continuously through penetrations of fire-rated walls and partitions. Terminate insulation at fire damper sleeves for fire-rated wall and partition penetrations. Externally insulate damper sleeves to match adjacent insulation and overlap duct insulation at least 2 inches. 1. Comply with requirements in Division 7 Section "Through-Penetration Firestop Systems" for firestopping and fire-resistive joint sealers. #### F. Insulation Installation at Floor Penetrations: - 1. Duct: Install insulation continuously through floor penetrations that are not fire rated. For penetrations through fire-rated assemblies, terminate insulation at fire damper sleeves and externally insulate damper sleeve beyond floor to match adjacent duct insulation. Overlap damper sleeve and duct insulation at least 2 inches. - 2. Pipe: Install insulation continuously through floor penetrations. - 3. Seal penetrations through fire-rated assemblies. Comply with requirements in Division 7 Section "Through-Penetration Firestop Systems." #### 3.5 GENERAL PIPE INSULATION INSTALLATION - A. Requirements in this article generally apply to all insulation materials except where more specific requirements are specified in various pipe insulation material installation articles. - B. Insulation Installation on Fittings, Valves, Strainers, Flanges, and Unions: - Install insulation over fittings, valves, strainers, flanges, unions, and other specialties with continuous thermal and vapor-retarder integrity, unless otherwise indicated. - 2. Insulate pipe elbows using preformed fitting insulation or mitered fittings made from same material and density as adjacent pipe insulation. Each piece shall be butted tightly against adjoining piece and bonded with adhesive. Fill joints, seams, voids, and irregular surfaces with insulating cement finished to a smooth, hard, and uniform contour that is uniform with adjoining pipe insulation. - Insulate tee fittings with preformed fitting insulation or sectional pipe insulation of same material and thickness as used for adjacent pipe. Cut sectional pipe insulation to fit. Butt each section closely to the next and hold in place with tie wire. Bond pieces with adhesive. - 4. Insulate valves using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. For valves, insulate up to and including the bonnets, valve stuffing-box studs, bolts, and nuts. Fill joints, seams, and irregular surfaces with insulating cement. - 5. Insulate strainers using preformed fitting insulation or sectional pipe insulation of same material, density, and thickness as used for adjacent pipe. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. Fill joints, seams, and irregular surfaces with insulating cement. Insulate strainers so strainer basket flange or plug can be easily removed and replaced without damaging the insulation and jacket. Provide a removable reusable insulation cover. For below ambient services, provide a design that maintains vapor barrier. - 6. Insulate flanges and unions using a section of oversized preformed pipe insulation. Overlap adjoining pipe insulation by not less than two times the thickness of pipe insulation, or one pipe diameter, whichever is thicker. - 7. Cover segmented insulated surfaces with a layer of finishing cement and coat with a mastic. Install vapor-barrier mastic for below ambient services and a breather mastic for above ambient services. Reinforce the mastic with fabric-reinforcing mesh. Trowel the mastic to a smooth and well-shaped contour. - 8. For services not specified to receive a field-applied jacket except for flexible elastomeric and polyolefin, install fitted PVC cover over elbows, tees, strainers, valves, flanges, and unions.
Terminate ends with PVC end caps. Tape PVC covers to adjoining insulation facing using PVC tape. - 9. Stencil or label the outside insulation jacket of each union with the word "UNION." Match size and color of pipe labels. - C. Insulate instrument connections for thermometers, pressure gages, pressure temperature taps, test connections, flow meters, sensors, switches, and transmitters on insulated pipes, vessels, and equipment. Shape insulation at these connections by tapering it to and around the connection with insulating cement and finish with finishing cement, mastic, and flashing sealant. - D. Install removable insulation covers at locations indicated. Installation shall conform to the following: - 1. Make removable flange and union insulation from sectional pipe insulation of same thickness as that on adjoining pipe. Install same insulation jacket as adjoining pipe insulation. - 2. When flange and union covers are made from sectional pipe insulation, extend insulation from flanges or union long at least two times the insulation thickness over adjacent pipe insulation on each side of flange or union. Secure flange cover in place with stainless-steel or aluminum bands. Select band material compatible with insulation and jacket. - 3. Construct removable valve insulation covers in same manner as for flanges except divide the two-part section on the vertical center line of valve body. - 4. When covers are made from block insulation, make two halves, each consisting of mitered blocks wired to stainless-steel fabric. Secure this wire frame, with its attached insulation, to flanges with tie wire. Extend insulation at least 2 inches over adjacent pipe insulation on each side of valve. Fill space between flange or union cover and pipe insulation with insulating cement. Finish cover assembly with insulating cement applied in two coats. After first coat is dry, apply and trowel second coat to a smooth finish. - 5. Unless a PVC jacket is indicated in field-applied jacket schedules, finish exposed surfaces with a metal jacket. #### 3.6 MINERAL-FIBER INSULATION INSTALLATION - A. Insulation Installation on Straight Pipes and Tubes: - 1. Secure each layer of preformed pipe insulation to pipe with wire or bands and tighten bands without deforming insulation materials. - 2. Where vapor barriers are indicated, seal longitudinal seams, end joints, and protrusions with vapor-barrier mastic and joint sealant. - 3. For insulation with factory-applied jackets on above ambient surfaces, secure laps with outward clinched staples at 6 inches o.c. - 4. For insulation with factory-applied jackets on below ambient surfaces, do not staple longitudinal tabs but secure tabs with additional adhesive as recommended by insulation material manufacturer and seal with vapor-barrier mastic and flashing sealant. # B. Insulation Installation on Pipe Flanges: - 1. Install preformed pipe insulation to outer diameter of pipe flange. - 2. Make width of insulation section same as overall width of flange and bolts, plus twice the thickness of pipe insulation. - 3. Fill voids between inner circumference of flange insulation and outer circumference of adjacent straight pipe segments with mineral-fiber blanket insulation. - 4. Install jacket material with manufacturer's recommended adhesive, overlap seams at least 1 inch, and seal joints with flashing sealant. # C. Insulation Installation on Pipe Fittings and Elbows: - 1. Install preformed sections of same material as straight segments of pipe insulation when available. - 2. When preformed insulation elbows and fittings are not available, install mitered sections of pipe insulation, to a thickness equal to adjoining pipe insulation. Secure insulation materials with wire or bands. # D. Insulation Installation on Valves and Pipe Specialties: - 1. Install preformed sections of same material as straight segments of pipe insulation when available. - 2. When preformed sections are not available, install mitered sections of pipe insulation to valve body. - 3. Arrange insulation to permit access to packing and to allow valve operation without disturbing insulation. - 4. Install insulation to flanges as specified for flange insulation application. # E. Blanket Insulation Installation on Ducts and Plenums: Secure with adhesive and insulation pins. - 1. Apply adhesives according to manufacturer's recommended coverage rates per unit area, for 100 percent coverage of duct and plenum surfaces. - 2. Apply adhesive to entire circumference of ducts and to all surfaces of fittings and transitions. - Install either capacitor-discharge-weld pins and speed washers or cupped-head, capacitor-discharge-weld pins on sides and bottom of horizontal ducts and sides of vertical ducts as follows: - a. On duct sides with dimensions 18 inches and smaller, place pins along longitudinal centerline of duct. Space 3 inches maximum from insulation end joints, and 16 inches o.c. - b. On duct sides with dimensions larger than 18 inches, place pins 16 inches o.c. each way, and 3 inches maximum from insulation joints. Install additional pins to hold insulation tightly against surface at cross bracing. - c. Pins may be omitted from top surface of horizontal, rectangular ducts and plenums. - d. Do not overcompress insulation during installation. - e. Impale insulation over pins and attach speed washers. - f. Cut excess portion of pins extending beyond speed washers or bend parallel with insulation surface. Cover exposed pins and washers with tape matching insulation facing. - 4. For ducts and plenums with surface temperatures below ambient, install a continuous unbroken vapor barrier. Create a facing lap for longitudinal seams and end joints with insulation by removing 2 inches from 1 edge and 1 end of insulation segment. Secure laps to adjacent insulation section with 1/2-inch outward-clinching staples, 1 inch o.c. Install vapor barrier consisting of factory-or field-applied jacket, adhesive, vapor-barrier mastic, and sealant at joints, seams, and protrusions. - a. Repair punctures, tears, and penetrations with tape or mastic to maintain vapor-barrier seal. - b. Install vapor stops for ductwork and plenums operating below 50 deg F at 18-foot intervals. Vapor stops shall consist of vapor-barrier mastic applied in a Z-shaped pattern over insulation face, along butt end of insulation, and over the surface. Cover insulation face and surface to be insulated a width equal to 2 times the insulation thickness but not less than 3 inches. - 5. Overlap unfaced blankets a minimum of 2 inches on longitudinal seams and end joints. At end joints, secure with steel bands spaced a maximum of 18 inches o.c. - 6. Install insulation on rectangular duct elbows and transitions with a full insulation section for each surface. Install insulation on round and flat-oval duct elbows with individually mitered gores cut to fit the elbow. - 7. Insulate duct stiffeners, hangers, and flanges that protrude beyond insulation surface with 6-inch- wide strips of same material used to insulate duct. Secure on alternating sides of stiffener, hanger, and flange with pins spaced 6 inches o.c. # 3.7 FIELD-APPLIED JACKET INSTALLATION - A. Where PVC jackets are indicated, install with 1-inch overlap at longitudinal seams and end joints; for horizontal applications, install with longitudinal seams along top and bottom of tanks and vessels. Seal with manufacturer's recommended adhesive. - 1. Apply two continuous beads of adhesive to seams and joints, one bead under lap and the finish bead along seam and joint edge. # 3.8 FIELD QUALITY CONTROL # A. Tests and Inspections: - 1. Inspect ductwork, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each duct system defined in the "Duct Insulation Schedule, General" Article. - 2. Inspect field-insulated equipment, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to one location(s) for each type of equipment defined in the "Equipment Insulation Schedule" Article. For large equipment, remove only a portion adequate to determine compliance. - 3. Inspect pipe, fittings, strainers, and valves, randomly selected by Architect, by removing field-applied jacket and insulation in layers in reverse order of their installation. Extent of inspection shall be limited to three locations of straight pipe, three locations of threaded fittings, three locations of welded fittings, two locations of threaded strainers, two locations of welded strainers, three locations of threaded valves, and three locations of flanged valves for each pipe service defined in the "Piping Insulation Schedule, General" Article. - B. All insulation applications will be considered defective Work if sample inspection reveals noncompliance with requirements. # 3.9 DUCT INSULATION SCHEDULE, GENERAL - A. Plenums and Ducts Requiring Insulation: - 1. Indoor, concealed supply and outdoor air. - 2. Indoor, exposed supply and outdoor air. - 3. Indoor, concealed return, Air. - 4. Indoor, exposed return, Air. - 5. Indoor, concealed, Type I, commercial, kitchen hood exhaust. - 6. Indoor, concealed exhaust. - 7. Indoor, exposed exhaust. #### B. Items Not Insulated: - 1. Fibrous-glass ducts. - 2. Metal ducts with duct liner of sufficient thickness to comply with energy code and ASHRAE/IESNA 90.1. - 3. Factory-insulated flexible ducts. - 4. Factory-insulated plenums and casings. - 5. Flexible connectors. - 6. Vibration-control devices. - 7. Factory-insulated access panels and doors. # 3.10 INDOOR DUCT AND PLENUM INSULATION SCHEDULE - A. Concealed, round and flat-oval duct insulation shall be the following: - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density. - B. Concealed, low pressure, round rectangular, and
flat-oval exhaust-air duct insulation shall be the following: - 1. Mineral-Fiber Blanket: 1-1/2 inches thick and 1.5-lb/cu. ft. nominal density. - C. Rectangular, low pressure, supply-air duct insulation shall be lined per Section "Metal Ducts". - D. Rectangular, return-air duct insulation shall be lined per Section "Metal Ducts". - E. Concealed, Type I, Commercial, Kitchen Hood Exhaust Duct and Plenum Insulation: Fire-rated blanket or board; thickness as required to achieve 2-hour fire rating. - F. Exposed or medium pressure, round and flat-oval, supply-air, and return air duct insulation shall be a perforated linear. See Section "Metal Ducts". ## 3.11 PIPING INSULATION SCHEDULE, GENERAL - A. Acceptable preformed pipe and tubular insulation materials and thicknesses are identified for each piping system and pipe size range. If more than one material is listed for a piping system, selection from materials listed is Contractor's option. - B. Items Not Insulated: Unless otherwise indicated, do not install insulation on the following: - 1. Drainage piping located in crawl spaces. - 2. Underground piping. - 3. Chrome-plated pipes and fittings unless there is a potential for personnel injury. #### 3.12 INDOOR PIPING INSULATION SCHEDULE A. Minimum Pipe Insulation Thickness from ANSI/ASHRAE/IESNA Standard 90.1-2004 | Fluid Design
Operating Temp.
Range (°F) | Insulation Conductivity | | Nominal | | | | | | | | | |--|------------------------------------|----------------------------|---------|-------------|-------------|---------|-----|--|--|--|--| | | Conductivity
Btu•in./(h•ft²•°F) | Mean
Rating
Temp. °F | <1 | 1 to <1-1/2 | 1-1/2 to <4 | 4 to <8 | ≥8 | | | | | | Heating Systems (Steam, Steam Condensate, and Hot Water) | | | | | | | | | | | | | >350 | 0.32-0.34 | 250 | 2.5 | 3.0 | 3.0 | 4.0 | 4.0 | | | | | | 251-350 | 0.29-0.32 | 200 | 1.5 | 2.5 | 3.0 | 3.0 | 3.0 | | | | | | 201-250
141-200 | 0.27-0.30
0.25-0.29 | 150
125 | 1.5
1.0 | 1.5
1.0 | 2.0
1.0 | 2.0
1.5 | 2.0
1.5 | | | | |---|------------------------|------------|------------|------------|------------|------------|------------|--|--|--| | 105-140 | 0.22-0.28 | 100 | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | | | | | Domestic and Service Hot Water Systems | | | | | | | | | | | | 105+ | 0.22-0.28 | 100 | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | | | | | Cooling Systems (Chilled Water, Brine, and Refrigerant) | | | | | | | | | | | | 40-60 | 0.22-0.28 | 100 | 0.5 | 0.5 | 1.0 | 1.0 | 1.0 | | | | | <40 | 0.22-0.28 | 100 | 0.5 | 1.0 | 1.0 | 1.0 | 1.5 | | | | # 3.13 INDOOR, FIELD-APPLIED JACKET SCHEDULE - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket. - B. If more than one material is listed, selection from materials listed is Contractor's option. - C. Piping, Exposed: - 1. PVC: 20 mils thick. # 3.14 OUTDOOR, FIELD APPLIED JACKET SCHEDULE - A. Install jacket over insulation material. For insulation with factory-applied jacket, install the field-applied jacket over the factory-applied jacket. - B. If more than one material is listed, selection from materials listed is Contractor's option. - C. Exterior piping, Exposed: - 1. Aluminum jacket. **END OF SECTION 15083** # **SECTION 15181 - HYDRONIC PIPING** #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes pipe and fitting materials, joining methods, special-duty valves, and specialties for the following: - 1. Hot-water heating piping. - 2. Condensate-drain piping. - 3. Air-vent piping. - B. Related Sections include the following: - 1. Division 15 Section "Hydronic Pumps" for pumps, motors, and accessories for hydronic piping. #### 1.3 PERFORMANCE REQUIREMENTS - A. Hydronic piping components and installation shall be capable of withstanding the following minimum working pressure and temperature: - 1. Hot-Water Heating Piping: 125 psig at 225° F. #### 1.4 SUBMITTALS - A. Product Data: For each type of the following: - 1. Valves. Include flow and pressure drop curves based on manufacturer's testing for calibrated-orifice balancing valves and automatic flow-control valves. - 2. Air control devices. - 3. Chemical treatment. - Hydronic specialties. - B. Welding certificates. - C. Qualification Data: For Installer. - D. Field quality-control test reports. - E. Operation and Maintenance Data: For air control devices, hydronic specialties, and special-duty valves to include in emergency, operation, and maintenance manuals. - F. Water Analysis: Submit a copy of the water analysis to illustrate water quality available at Project site. #### 1.5 QUALITY ASSURANCE #### A. Installer Qualifications: - Installers of Pressure-Sealed Joints: Installers shall be certified by the pressureseal joint manufacturer as having been trained and qualified to join piping with pressure-seal pipe couplings and fittings. - 2. Fiberglass Pipe and Fitting Installers: Installers of RTRF and RTRP shall be certified by the manufacturer of pipes and fittings as having been trained and qualified to join fiberglass piping with manufacturer-recommended adhesive. - B. Steel Support Welding: Qualify processes and operators according to AWS D1.1/D1.1M, "Structural Welding Code Steel." - C. Welding: Qualify processes and operators according to ASME Boiler and Pressure Vessel Code: Section IX. - 1. Comply with provisions in ASME B31 Series, "Code for Pressure Piping." - 2. Certify that each welder has passed AWS qualification tests for welding processes involved and that certification is current. - D. ASME Compliance: Comply with ASME B31.9, "Building Services Piping," for materials, products, and installation. Safety valves and pressure vessels shall bear the appropriate ASME label. Fabricate and stamp air separators and expansion tanks to comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1. # 1.6 EXTRA MATERIALS - A. Water-Treatment Chemicals: Furnish enough chemicals for initial system startup and for preventive maintenance for one year from date of Substantial Completion. - B. Differential Pressure Meter: For each type of balancing valve and automatic flow control valve, include flowmeter, probes, hoses, flow charts, and carrying case. # **PART 2 - PRODUCTS** # 2.1 STEEL PIPE AND FITTINGS A. Steel Pipe: ASTM A 53/A 53M, black steel with plain ends; type, grade, and wall thickness as indicated in Part 3 "Piping Applications" Article. - B. Cast-Iron Threaded Fittings: ASME B16.4; Classes 125 and 250 as indicated in Part 3 "Piping Applications" Article. - C. Malleable-Iron Threaded Fittings: ASME B16.3, Classes 150 and 300 as indicated in Part 3 "Piping Applications" Article. - D. Malleable-Iron Unions: ASME B16.39; Classes 150, 250, and 300 as indicated in Part 3 "Piping Applications" Article. - E. Cast-Iron Pipe Flanges and Flanged Fittings: ASME B16.1, Classes 25, 125, and 250; raised ground face, and bolt holes spot faced as indicated in Part 3 "Piping Applications" Article. - F. Wrought-Steel Fittings: ASTM A 234/A 234M, wall thickness to match adjoining pipe. - G. Wrought Cast- and Forged-Steel Flanges and Flanged Fittings: ASME B16.5, including bolts, nuts, and gaskets of the following material group, end connections, and facings: - 1. Material Group: 1.1. - 2. End Connections: Butt welding. - 3. Facings: Raised face. - H. Steel Pipe Nipples: ASTM A 733, made of same materials and wall thicknesses as pipe in which they are installed. # 2.2 **JOINING MATERIALS** - A. Pipe-Flange Gasket Materials: Suitable for chemical and thermal conditions of piping system contents. - 1. ASME B16.21, nonmetallic, flat, asbestos free, maximum thickness unless thickness or specific material is indicated. - a. Full-Face Type: For flat-face, Class 125, cast-iron and cast-bronze flanges. - b. Narrow-Face Type: For raised-face, Class 250, cast-iron and steel flanges. - B. Flange Bolts and Nuts: ASME B18.2.1, carbon steel, unless otherwise indicated. - C. Solder Filler Metals: ASTM B 32, lead-free alloys. Include water-flushable flux according to ASTM B 813. - D. Brazing Filler Metals: AWS A5.8, BCuP Series, copper-phosphorus alloys for joining copper with copper; or BAg-1, silver alloy for joining copper with bronze or steel. - E. Welding Filler Metals: Comply with AWS D10.12/D10.12M for welding materials appropriate for wall thickness and chemical analysis of steel pipe being welded. F. Gasket Material: Thickness, material, and type suitable for fluid to be handled and working temperatures and pressures. #### 2.3 VALVES - A. Gate, Globe, Check, Ball, and Butterfly Valves: Comply with requirements specified in Division 15 Section "Valves." - B. Automatic Temperature-Control Valves, Actuators, and Sensors: Comply with requirements specified in Division 15 Section "HVAC Instrumentation and Controls." - C. Cast-Iron or Steel, Calibrated-Orifice, Balancing Valves: - 1. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - a. Armstrong Pumps, Inc. - b. Bell & Gossett Domestic Pump; a division of ITT Industries. - c. Flow Design Inc. - d. Gerand Engineering Co. - e. Griswold Controls. - f. Taco. - g. Tour & Andersson; available through Victaulic Company of America. - h. Prior approved equal. - 2. Body: Cast-iron or steel body, ball, plug, or globe pattern with calibrated orifice or venturi. - 3. Ball: Brass or stainless steel. - 4. Stem Seals: EPDM O-rings. - 5. Disc: Glass and carbon-filled PTFE. - 6. Seat: PTFE. - 7. End Connections: Flanged or grooved. - 8. Pressure Gage Connections: Integral seals for portable differential pressure meter. - 9. Handle Style: Lever, with memory stop to
retain set position. - 10. CWP Rating: Minimum. - 11. Maximum Operating Temperature: . #### 2.4 AIR CONTROL DEVICES - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Amtrol, Inc. - 2. Armstrong Pumps, Inc. - 3. Bell & Gossett Domestic Pump; a division of ITT Industries. - 4. Taco. - 5. Prior approved equal. ## B. Manual Air Vents: - 1. Body: Bronze. - 2. Internal Parts: Nonferrous. - 3. Operator: Screwdriver or thumbscrew. - 4. Inlet Connection: NPS 1/2. - 5. Discharge Connection: NPS 1/8. - 6. CWP Rating: 150 psig. - 7. Maximum Operating Temperature: 225 deg F. # C. Automatic Air Vents: - 1. Body: Bronze or cast iron. - 2. Internal Parts: Nonferrous. - 3. Operator: Noncorrosive metal float. - 4. Inlet Connection: NPS 1/2. - 5. Discharge Connection: NPS 1/4. - 6. CWP Rating: 150 psig. - 7. Maximum Operating Temperature: 240 deg F. #### 2.5 CHEMICAL TREATMENT A. This contractor shall drain and refill system as necessary for this project. This contactor shall be responsible to treat new make-up water as necessary to match existing. # 2.6 HYDRONIC PIPING SPECIALTIES #### A. Y-Pattern Strainers: - 1. Body: ASTM A 126, Class B, cast iron with bolted cover and bottom drain connection. - 2. End Connections: Threaded ends for NPS 2 (DN 50) and smaller; flanged ends for NPS 2-1/2 (DN 65) and larger. - 3. Strainer Screen: 40-mesh startup strainer, and perforated stainless-steel basket with 50 percent free area. - 4. CWP Rating: 125 psig (860 kPa). # B. Stainless-Steel Bellow, Flexible Connectors: - 1. Body: Stainless-steel bellows with woven, flexible, bronze, wire-reinforcing protective jacket. - 2. End Connections: Threaded or flanged to match equipment connected. - 3. Performance: Capable of 3/4-inch (20-mm) misalignment. - 4. CWP Rating: 150 psig (1035 kPa). - 5. Maximum Operating Temperature: 250 deg F (121 deg C). # **PART 3 - EXECUTION** #### 3.1 PIPING APPLICATIONS - A. Hot-water heating piping, aboveground, 2 inch and smaller, shall be the following: - 1. Schedule 40 steel pipe; Class 125, cast-iron fittings; cast-iron flanges and flange fittings; and threaded joints. - B. Hot-water heating piping, aboveground, 2-1/2 inch and larger, shall be any of the following: - 1. Schedule 40 steel pipe, wrought-steel fittings and wrought-cast or forged-steel flanges and flange fittings, and welded and flanged joints. - 2. Schedule 40 steel pipe; grooved, mechanical joint coupling and fittings; and grooved, mechanical joints. - C. Condensate-Drain Piping: Schedule 40 PVC plastic pipe and fittings and solvent-welded joints. - D. Air-Vent Piping: - 1. Inlet: Same as service where installed with metal-to-plastic transition fittings for plastic piping systems according to the piping manufacturer's written instructions. - 2. Outlet: Type, annealed-temper copper tubing with soldered or flared joints. # 3.2 VALVE APPLICATIONS - A. Install shutoff-duty valves at each branch connection to supply mains, and at supply connection to each piece of equipment. - B. Install calibrated-orifice, balancing valves at each branch connection to return main. - C. Install calibrated-orifice, balancing valves in the return pipe of each heating or cooling terminal. - D. Install check valves at each pump discharge and elsewhere as required to control flow direction. - E. Install safety valves at hot-water generators and elsewhere as required by ASME Boiler and Pressure Vessel Code. Install drip-pan elbow on safety-valve outlet and pipe without valves to the outdoors; and pipe drain to nearest floor drain or as indicated on Drawings. Comply with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, for installation requirements. - F. Install pressure-reducing valves at makeup-water connection to regulate system fill pressure. # 3.3 PIPING INSTALLATIONS - A. Drawing plans, schematics, and diagrams indicate general location and arrangement of piping systems. Indicate piping locations and arrangements if such were used to size pipe and calculate friction loss, expansion, pump sizing, and other design considerations. Install piping as indicated unless deviations to layout are approved on Coordination Drawings. - B. Install piping in concealed locations, unless otherwise indicated and except in equipment rooms and service areas. - C. Install piping indicated to be exposed and piping in equipment rooms and service areas at right angles or parallel to building walls. Diagonal runs are prohibited unless specifically indicated otherwise. - D. Install piping above accessible ceilings to allow sufficient space for ceiling panel removal. - E. Install piping to permit valve servicing. - F. Install piping at indicated slopes. - G. Install piping free of sags and bends. - H. Install fittings for changes in direction and branch connections. - I. Install piping to allow application of insulation. - J. Select system components with pressure rating equal to or greater than system operating pressure. - K. Install groups of pipes parallel to each other, spaced to permit applying insulation and servicing of valves. - L. Install drains, consisting of a tee fitting, ball valve, and short threaded nipple with cap, at low points in piping system mains and elsewhere as required for system drainage. - M. Install piping at a uniform grade of 0.2 percent upward in direction of flow. - N. Reduce pipe sizes using eccentric reducer fitting installed with level side up. - O. Install branch connections to mains using mechanically formed tee fittings in main pipe, with the branch connected to the bottom of the main pipe. For up-feed risers, connect the branch to the top of the main pipe. - P. Install valves according to Division 15 Section "Valves." - Q. Install unions in piping, and smaller, adjacent to valves, at final connections of equipment, and elsewhere as indicated. - R. Install flanges in piping, 2-1/2 and larger, at final connections of equipment and elsewhere as indicated. - S. Install strainers on inlet side of each control valve, pressure-reducing valve, solenoid valve, in-line pump, and elsewhere as indicated. Install nipple and ball valve in blowdown connection of strainers 2-1/2 inch and larger. Match size of strainer blowoff connection for strainers smaller than 2 inch. - T. Install expansion loops, expansion joints, anchors, and pipe alignment guides as specified in Division 15 Section "Pipe Expansion Fittings and Loops." - U. Identify piping as specified in Division 15 Section "Mechanical Identification." #### 3.4 HANGERS AND SUPPORTS - A. Hanger, support, and anchor devices are specified in Division 15 Section "Hangers and Supports." Comply with the following requirements for maximum spacing of supports. - B. Seismic restraints are specified in Division 15 Section "Mechanical Vibration and Seismic Controls." - C. Install the following pipe attachments: - 1. Adjustable steel clevis hangers for individual horizontal piping less than long. - 2. Adjustable roller hangers and spring hangers for individual horizontal piping or longer. - 3. Pipe Roller: MSS SP-58, Type 44 for multiple horizontal piping or longer, supported on a trapeze. - 4. Spring hangers to support vertical runs. - 5. Provide copper-clad hangers and supports for hangers and supports in direct contact with copper pipe. - 6. On plastic pipe, install pads or cushions on bearing surfaces to prevent hanger from scratching pipe. - D. Install hangers for steel piping with the following maximum spacing and minimum rod sizes: - 1. NPS 3/4: Maximum span, 7 feet; minimum rod size, 1/4 inch. - 2. NPS 1: Maximum span, 7 feet; minimum rod size, 1/4 inch. - 3. NPS 1-1/2: Maximum span, 9 feet; minimum rod size, 3/8 inch. - 4. NPS 2: Maximum span, 10 feet; minimum rod size, 3/8 inch. - 5. NPS 2-1/2: Maximum span, 11 feet; minimum rod size, 3/8 inch. - 6. NPS 3: Maximum span, 12 feet: minimum rod size, 3/8 inch. - 7. NPS 4: Maximum span, 14 feet; minimum rod size, 1/2 inch. - 8. NPS 6: Maximum span, 17 feet; minimum rod size, 1/2 inch. - 9. NPS 8: Maximum span, 19 feet; minimum rod size, 5/8 inch. - 10. NPS 10: Maximum span, 20 feet; minimum rod size, 3/4 inch. - 11. NPS 12: Maximum span, 23 feet; minimum rod size, 7/8 inch. - 12. NPS 14: Maximum span, 25 feet; minimum rod size, 1 inch. - 13. NPS 16: Maximum span, 27 feet; minimum rod size, 1 inch. - 14. NPS 18: Maximum span, 28 feet; minimum rod size, 1-1/4 inches. - 15. NPS 20: Maximum span, 30 feet; minimum rod size, 1-1/4 inches. - E. Support vertical runs at roof, at each floor, and at intervals between floors. #### 3.5 PIPE JOINT CONSTRUCTION - A. Join pipe and fittings according to the following requirements and Division 15 Sections specifying piping systems. - B. Ream ends of pipes and tubes and remove burrs. Bevel plain ends of steel pipe. - C. Remove scale, slag, dirt, and debris from inside and outside of pipe and fittings before assembly. - D. Threaded Joints: Thread pipe with tapered pipe threads according to ASME B1.20.1. Cut threads full and clean using sharp dies. Ream threaded pipe ends to remove burrs and restore full ID. Join pipe fittings and valves as follows: - 1. Apply appropriate tape or thread compound to external pipe threads unless dry seal threading is specified. - Damaged Threads: Do not use pipe or pipe fittings with threads that are corroded or damaged. Do not use pipe sections that have cracked or open welds. - E. Welded Joints: Construct joints according to AWS D10.12/D10.12M, using qualified processes and welding operators according to Part 1 "Quality Assurance" Article. - F. Flanged Joints: Select appropriate gasket material, size, type, and thickness for service application. Install gasket concentrically positioned. Use suitable lubricants on bolt threads. #### 3.6 HYDRONIC SPECIALTIES INSTALLATION - A. Install manual air vents at high points in piping, at heat-transfer coils, and elsewhere as required for system air venting. - B. Install automatic air vents at high
points of system piping in mechanical equipment rooms only. Manual vents at heat-transfer coils and elsewhere as required for air venting. # 3.7 TERMINAL EQUIPMENT CONNECTIONS - A. Sizes for supply and return piping connections shall be the same as or larger than equipment connections. - B. Install control valves in accessible locations close to connected equipment. - C. Install bypass piping with globe valve around control valve. If parallel control valves are installed, only one bypass is required. - D. Install ports for pressure gages and thermometers at coil inlet and outlet connections according to Division 15 Section "Meters and Gages." #### 3.8 CHEMICAL TREATMENT A. Perform an analysis of makeup water to determine type and quantities of chemical treatment needed to keep system free of scale, corrosion, and fouling. # 3.9 FIELD QUALITY CONTROL - A. Prepare hydronic piping according to ASME B31.9 and as follows: - 1. Leave joints, including welds, uninsulated and exposed for examination during test - 2. Provide temporary restraints for expansion joints that cannot sustain reactions due to test pressure. If temporary restraints are impractical, isolate expansion joints from testing. - 3. Flush hydronic piping systems with clean water; then remove and clean or replace strainer screens. - 4. Isolate equipment from piping. If a valve is used to isolate equipment, its closure shall be capable of sealing against test pressure without damage to valve. Install blinds in flanged joints to isolate equipment. - 5. Install safety valve, set at a pressure no more than one-third higher than test pressure, to protect against damage by expanding liquid or other source of overpressure during test. - B. Perform the following tests on hydronic piping: - 1. Use ambient temperature water as a testing medium unless there is risk of damage due to freezing. Another liquid that is safe for workers and compatible with piping may be used. - 2. While filling system, use vents installed at high points of system to release air. Use drains installed at low points for complete draining of test liquid. - 3. Isolate expansion tanks and determine that hydronic system is full of water. - 4. Subject piping system to hydrostatic test pressure that is not less than 1.5 times the system's working pressure. Test pressure shall not exceed maximum pressure for any vessel, pump, valve, or other component in system under test. Verify that stress due to pressure at bottom of vertical runs does not exceed 90 percent of specified minimum yield strength or 1.7 times "SE" value in Appendix A in ASME B31.9, "Building Services Piping." - 5. After hydrostatic test pressure has been applied for at least 4 hours, examine piping, joints, and connections for leakage. Eliminate leaks by tightening, repairing, or replacing components, and repeat hydrostatic test until there are no leaks. - 6. Prepare written report of testing. - C. Perform the following before operating the system: - 1. Open manual valves fully. - 2. Inspect pumps for proper rotation. - 3. Set makeup pressure-reducing valves for required system pressure. - 4. Inspect air vents at high points of system and determine if all are installed and operating freely (automatic type), or bleed air completely (manual type). - 5. Set temperature controls so all coils are calling for full flow. - 6. Inspect and set operating temperatures of hydronic equipment, such as boilers, chillers, cooling towers, to specified values. - 7. Verify lubrication of motors and bearings. **END OF SECTION 15181** # SECTION 15732 - PACKAGED, OUTDOOR, CENTRAL-STATION AIR-HANDLING UNITS #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes packaged, outdoor, central-station air-handling units (rooftop units) with the following components and accessories: - 1. Direct-expansion cooling- cold deck. - 2. Hot and cold deck outlets. - 3. Heating water coils-hot deck. - 4. Economizer outdoor- and return-air damper section. #### 1.3 **DEFINITIONS** - A. DDC: Direct-digital controls. - B. ECM: Electrically commutated motor. - C. Outdoor-Air Refrigerant Coil: Refrigerant coil in the outdoor-air stream to reject heat during cooling operations and to absorb heat during heating operations. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system. - D. Outdoor-Air Refrigerant-Coil Fan: The outdoor-air refrigerant-coil fan in RTUs. "Outdoor air" is defined as the air outside the building or taken from outdoors and not previously circulated through the system. - E. RTU: Rooftop unit. As used in this Section, this abbreviation means packaged, outdoor, central-station air-handling units. This abbreviation is used regardless of whether the unit is mounted on the roof or on a concrete base on ground. - F. Supply-Air Fan: The fan providing supply air to conditioned space. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus. - G. Supply-Air Refrigerant Coil: Refrigerant coil in the supply-air stream to absorb heat (provide cooling) during cooling operations and to reject heat (provide heating) during heating operations. "Supply air" is defined as the air entering a space from air-conditioning, heating, or ventilating apparatus. # 1.4 PERFORMANCE REQUIREMENTS - A. Delegated Design: Design RTU supports to comply with seismic performance requirements, including comprehensive engineering analysis by a qualified professional engineer, using performance requirements and design criteria indicated. - B. Seismic Performance: RTUs shall withstand the effects of earthquake motions determined according to SEI/ASCE 7. - 1. The term "withstand" means "the unit will remain in place without separation of any parts from the device when subjected to the seismic forces specified." #### 1.5 SUBMITTALS - A. Product Data: Include manufacturer's technical data for each RTU, including rated capacities, dimensions, required clearances, characteristics, furnished specialties, and accessories. - B. Shop Drawings: Detail equipment assemblies and indicate dimensions, weights, loads, required clearances, method of field assembly, components, and location and size of each field connection. - 1. Wiring Diagrams: Power, signal, and control wiring. - C. Delegated-Design Submittal: For RTU supports indicated to comply with performance requirements and design criteria, including analysis data signed and sealed by the qualified professional engineer responsible for their preparation. - 1. Design Calculations: Calculate requirements for selecting vibration isolators and seismic restraints and for designing vibration isolation bases. - 2. Detail mounting, securing, and flashing of roof curb to roof structure. Indicate coordinating requirements with roof membrane system. - 3. Seismic-Restraint Details: Detail fabrication and attachment of wind and seismic restraints and snubbers. Show anchorage details and indicate quantity, diameter, and depth of penetration of anchors. - D. Manufacturer Seismic Qualification Certification: Submit certification that RTUs, accessories, and components will withstand seismic forces defined in "Performance Requirements" Article and in Division 15 Section "Vibration and Seismic Controls for HVAC Piping and Equipment." - 1. Basis for Certification: Indicate whether withstand certification is based on actual test of assembled components or on calculation. - 2. Dimensioned Outline Drawings of Equipment Unit: Identify center of gravity and locate and describe mounting and anchorage provisions. - 3. Detailed description of equipment anchorage devices on which the certification is based and their installation requirements. - E. Coordination Drawings: Plans and other details, drawn to scale, on which the following items are shown and coordinated with each other, using input from installers of the items involved: - 1. Structural members to which RTUs will be attached. - 2. Roof openings - 3. Roof curbs and flashing. - F. Field quality-control test reports. - G. Operation and Maintenance Data: For RTUs to include in emergency, operation, and maintenance manuals. - H. Warranty: Special warranty specified in this Section. # 1.6 QUALITY ASSURANCE - A. ARI Compliance: - 1. Comply with ARI 210/240 and ARI 340/360 for testing and rating energy efficiencies for RTUs. - 2. Comply with ARI 270 for testing and rating sound performance for RTUs. - B. ASHRAE Compliance: - 1. Comply with ASHRAE 15 for refrigeration system safety. - 2. Comply with ASHRAE 33 for methods of testing cooling and heating coils. - 3. Comply with ASHRAE/IESNA 90.1 for minimum efficiency of heating and cooling. - C. NFPA Compliance: Comply with NFPA 90A and NFPA 90B. - D. UL Compliance: Comply with UL 1995. - E. Electrical Components, Devices, and Accessories: Listed and labeled as defined in NFPA 70, Article 100, by a testing agency acceptable to authorities having jurisdiction, and marked for intended use. # 1.7 WARRANTY - A. Special Warranty: Manufacturer's standard form in which manufacturer agrees to replace components of RTUs that fail in materials or workmanship within specified warranty period. - 1. Warranty Period for Compressors: Manufacturer's standard, but not less than five years from date of Substantial Completion. - 2. Warranty Period for Solid-State Ignition Modules: Manufacturer's standard, but not less than three years from date of Substantial Completion. - 3. Warranty Period for Control Boards: Manufacturer's standard, but not less than three years from date of Substantial Completion. # 1.8 EXTRA MATERIALS - A. Furnish extra materials described below that match products installed and that are packaged with protective covering for storage and identified with
labels describing contents. - 1. Fan Belts: One set for each belt-driven fan. - 2. Filters: One set of filters for each unit. #### **PART 2 - PRODUCTS** # 2.1 MANUFACTURERS - A. Manufacturers: Subject to compliance with requirements, provide products by one of the following: - 1. Governaire or Equal by. - 2. Mammoth. - 3. Haakon. #### 2.2 CASING - A. General Fabrication Requirements for Casings: Formed and reinforced double-wall insulated panels, fabricated to allow removal for access to internal parts and components, with joints between sections sealed. - B. Exterior Casing Material: Galvanized steel with factory-painted finish, with pitched roof panels and knockouts with grommet seals for electrical and piping connections and lifting lugs. - 1. Exterior Casing Thickness: 0.052 inch thick. - C. Inner Casing Fabrication Requirements: - 1. Inside Casing: Galvanized steel, 0.028 inch thick, perforated 40 percent free area. - D. Casing Insulation and Adhesive: Comply with NFPA 90A or NFPA 90B. - 1. Materials: ASTM C 1071, Type I. - 2. Thickness: 1 inch. - Liner materials shall have air-stream surface coated with an erosion- and temperature-resistant coating or faced with a plain or coated fibrous mat or fabric. - 4. Liner Adhesive: Comply with ASTM C 916, Type I. - E. Condensate Drain Pans: Formed sections of stainless-steel sheet, a minimum of 2 inches deep, and complying with ASHRAE 62. - 1. Double-Wall Construction: Fill space between walls with foam insulation and seal moisture tight. - 2. Drain Connections: Threaded nipple both sides of drain pan. - 3. Pan-Top Surface Coating: Corrosion-resistant compound. # 2.3 FANS - A. Belt-Driven Supply-Air Fans: Double width, forward curved, centrifugal; with permanently lubricated, single-speed motor installed on an adjustable fan base resiliently mounted in the casing. Aluminum or painted-steel wheels, and galvanized-or painted-steel fan scrolls. - B. Condenser-Coil Fan: Propeller, mounted on shaft of permanently lubricated motor. - C. Relief-Air Fan: Forward curved, shaft mounted on permanently lubricated motor. - D. Seismic Fabrication Requirements: Fabricate fan section, internal mounting frame and attachment to fans, fan housings, motors, casings, accessories, and other fan section components with reinforcement strong enough to withstand seismic forces defined in Division 15 Section "Vibration and Seismic Controls for HVAC Piping and Equipment" when fan-mounted frame and RTU-mounted frame are anchored to building structure. - E. Fan Motor: Comply with requirements in Division 15 Section "Motors." # 2.4 COILS - A. Supply-Air Refrigerant Coil: - 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor. - 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan. - 3. Coil Split: Interlaced. - 4. Condensate Drain Pan: Stainless steel formed with pitch and drain connections complying with ASHRAE 62. # B. Heating Water Coil: - 1. Aluminum-plate fin and seamless copper tube in steel casing with equalizing-type vertical distributor. - 2. Polymer strip shall prevent all copper coil from contacting steel coil frame or condensate pan. # 2.5 REFRIGERANT CIRCUIT COMPONENTS A. Number of Refrigerant Circuits: Two. - B. Compressor: Hermetic, scroll, mounted on vibration isolators; with internal overcurrent and high-temperature protection, internal pressure relief, and crankcase heater. - C. Refrigeration Specialties: - 1. Refrigerant Charge: R-407C or R-410A. - 2. Expansion valve with replaceable thermostatic element. - 3. Refrigerant filter/dryer. - 4. Manual-reset high-pressure safety switch. - 5. Automatic-reset low-pressure safety switch. - 6. Minimum off-time relay. - 7. Automatic-reset compressor motor thermal overload. - 8. Brass service valves installed in compressor suction and liquid lines. - 9. Low-ambient kit high-pressure sensor. - 10. Hot-gas bypass solenoid valve with a replaceable magnetic coil. - 11. Four-way reversing valve with a replaceable magnetic coil, thermostatic expansion valves with bypass check valves, and a suction line accumulator. # 2.6 AIR FILTRATION - A. Minimum arrestance according to ASHRAE 52.1, and a minimum efficiency reporting value (MERV) according to ASHRAE 52.2. - 1. Pleated: Minimum 90 percent arrestance, and MERV 7. # 2.7 DAMPERS - A. Outdoor-Air Damper: Linked damper blades, for 0 to 25 percent outdoor air, with motorized damper filter. - B. Outdoor- and Return-Air Mixing Dampers: Parallel- or opposed-blade galvanized-steel dampers mechanically fastened to cadmium plated for galvanized-steel operating rod in reinforced cabinet. Connect operating rods with common linkage and interconnect linkages so dampers operate simultaneously. - 1. Damper Motor: Modulating with adjustable minimum position. - 2. Relief-Air Damper: Gravity actuated with bird screen and hood. #### 2.8 ELECTRICAL POWER CONNECTION - A. Provide for single connection of power to unit with unit-mounted disconnect switch accessible from outside unit and control-circuit transformer with built-in overcurrent protection. - B. Provide with Factory installed variable frequency drive. # 2.9 CONTROLS - A. Control equipment and sequence of operation are specified in Division 15 Section "HVAC Instrumentation and Controls." - B. Interface Requirements for HVAC Instrumentation and Control System: - 1. Provide BACnet LonWorks compatible interface for central HVAC control workstation for the following: - a. Adjusting set points. - b. Monitoring supply fan start, stop, and operation. - c. Inquiring data to include outdoor-air damper position, supply- and room-air temperature. - d. Monitoring occupied and unoccupied operations. - e. Monitoring constant and variable motor loads. - f. Monitoring variable-frequency drive operation. - g. Monitoring cooling load. - h. Monitoring economizer cycles. - i. Monitoring air-distribution static pressure and ventilation air volume. # 2.10 ACCESSORIES - A. Duplex, 115-V, ground-fault-interrupter outlet with 15-A overcurrent protection. Include transformer if required. Outlet shall be energized even if the unit main disconnect is open. - B. Low-ambient kit using condenser fans for operation down to 35 deg F. - C. Filter differential pressure switch with sensor tubing on either side of filter. Set for final filter pressure loss. - D. Hail guards of galvanized steel, painted to match casing. #### 2.11 ROOF CURBS A. This unit shall mount directly to existing roof curb. Field verifies exact dimensions. # 2.12 CAPACITIES AND CHARACTERISTICS: See Drawings. #### **PART 3 - EXECUTION** #### 3.1 EXAMINATION - A. Examine substrates, areas, and conditions, with Installer present, for compliance with requirements for installation tolerances and other conditions affecting performance of RTUs. - B. Examine roughing-in for RTUs to verify actual locations of piping and duct connections before equipment installation. - C. Examine roofs for suitable conditions where RTUs will be installed. - D. Proceed with installation only after unsatisfactory conditions have been corrected. #### 3.2 INSTALLATION - Roof Curb: Install on roof structure. - B. Install wind and seismic restraints according to manufacturer's written instructions. ## 3.3 CONNECTIONS - A. Install condensate drain, minimum connection size, with trap and indirect connection to nearest roof drain or area drain. - B. Install piping adjacent to RTUs to allow service and maintenance. - Gas Piping: Comply with applicable requirements in Division 15 Section "Fuel Gas Piping." Connect gas piping to burner, full size of gas train inlet, and connect with union and shutoff valve with sufficient clearance for burner removal and service. - C. Duct installation requirements are specified in other Division 15 Sections. Drawings indicate the general arrangement of ducts. The following are specific connection requirements: - 1. Install ducts to termination at top of roof curb. - 2. Remove roof decking only as required for passage of ducts. Do not cut out decking under entire roof curb. - 3. Connect supply ducts to RTUs with flexible duct connectors specified in Division 15 Section "Duct Accessories." - 4. Install return-air duct continuously through roof structure. # 3.4 FIELD QUALITY CONTROL - A. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect, test, and adjust components, assemblies, and equipment installations, including connections. Report results in writing. - B. Perform tests and inspections and prepare test reports. - 1. Manufacturer's Field Service: Engage a factory-authorized service representative to inspect components, assemblies, and equipment installations, including connections, and to assist in testing. Report results in writing. # C. Tests and Inspections: - 1. After installing RTUs and after electrical circuitry has been energized, test units for compliance with requirements. - 2. Inspect for and remove shipping bolts, blocks, and tie-down straps. - 3. Operational Test: After electrical circuitry has been energized, start units to confirm proper motor rotation and unit operation. - 4. Test and adjust controls and safeties. Replace damaged and malfunctioning controls and equipment. - D. Remove and replace malfunctioning units and retest as specified above. #### 3.5 STARTUP SERVICE - A. Engage a factory-authorized service representative to perform startup service. - B. Complete installation and startup checks according to manufacturer's written instructions and do the following: - 1. Inspect for visible damage to unit casing. - 2. Inspect for visible damage to furnace combustion chamber. - 3. Inspect for visible damage to compressor, coils, and fans. - 4. Inspect internal insulation. - 5. Verify that labels are clearly visible. - 6. Verify that clearances have been provided for servicing. - 7. Verify that controls are connected and operable. - 8. Verify that filters are installed.
- 9. Clean condenser coil and inspect for construction debris. - 10. Clean furnace flue and inspect for construction debris. - 11. Connect and purge gas line. - 12. Remove packing from vibration isolators. - 13. Inspect operation of barometric relief dampers. - 14. Verify lubrication on fan and motor bearings. - 15. Inspect fan-wheel rotation for movement in correct direction without vibration and binding. - 16. Adjust fan belts to proper alignment and tension. - 17. Start unit according to manufacturer's written instructions. - a. Start refrigeration system. - b. Do not operate below recommended low-ambient temperature. - c. Complete startup sheets and attach copy with Contractor's startup report. - 18. Inspect and record performance of interlocks and protective devices; verify sequences. - 19. Operate unit for an initial period as recommended or required by manufacturer. - 20. Perform the following operations for both minimum and maximum firing. Adjust burner for peak efficiency. - a. Measure gas pressure on manifold. - b. Inspect operation of power vents. - c. Measure combustion-air temperature at inlet to combustion chamber. - d. Measure flue-gas temperature at furnace discharge. - e. Perform flue-gas analysis. Measure and record flue-gas carbon dioxide and oxygen concentration. - f. Measure supply-air temperature and volume when burner is at maximum firing rate and when burner is off. Calculate useful heat to supply air. - 21. Calibrate thermostats. - 22. Adjust and inspect high-temperature limits. - 23. Inspect outdoor-air dampers for proper stroke and interlock with return-air dampers. - 24. Start refrigeration system and measure and record the following when ambient is a minimum of 15 deg F above return-air temperature: - a. Coil leaving-air, dry- and wet-bulb temperatures. - b. Coil entering-air, dry- and wet-bulb temperatures. - c. Outdoor-air, dry-bulb temperature. - d. Outdoor-air-coil, discharge-air, dry-bulb temperature. - 25. Inspect controls for correct sequencing of heating, mixing dampers, refrigeration, and normal and emergency shutdown. - 26. Measure and record the following minimum and maximum airflows. Plot fan volumes on fan curve. - a. Supply-air volume. - b. Return-air volume. - c. Relief-air volume. - d. Outdoor-air intake volume. - 27. Simulate maximum cooling demand and inspect the following: - a. Compressor refrigerant suction and hot-gas pressures. - b. Short circuiting of air through condenser coil or from condenser fans to outdoor-air intake. - 28. Verify operation of remote panel including pilot-light operation and failure modes. Inspect the following: - a. High-temperature limit on gas-fired heat exchanger. - b. Low-temperature safety operation. - c. Filter high-pressure differential alarm. - d. Economizer to minimum outdoor-air changeover. - e. Relief-air fan operation. - f. Smoke and firestat alarms. - 29. After startup and performance testing and prior to Substantial Completion, replace existing filters with new filters. # 3.6 CLEANING AND ADJUSTING - A. Occupancy Adjustments: When requested within 12 months of date of Substantial Completion, provide on-site assistance in adjusting system to suit actual occupied conditions. Provide up to two visits to site during other-than-normal occupancy hours for this purpose. - B. After completing system installation and testing, adjusting, and balancing RTU and airdistribution systems, clean filter housings and install new filters. #### 3.7 DEMONSTRATION A. Engage a factory-authorized service representative to train Owner's maintenance personnel to adjust, operate, and maintain RTUs. Refer to Division 1 Section "Demonstration and Training." **END OF SECTION 15732** # SECTION 15815 - METAL DUCTS #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. # 1.2 SUMMARY - A. Section Includes: - 1. Single-wall rectangular ducts and fittings. - 2. Single-wall round and flat-oval ducts and fittings. - Sheet metal materials. - Sealants and gaskets. #### 1.3 PERFORMANCE REQUIREMENTS - A. Delegated Duct Design: Duct construction, including sheet metal thicknesses, seam and joint construction, reinforcements, and hangers and supports, shall comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" and performance requirements and design criteria indicated. - Static-Pressure Classes: - a. Supply Ducts (except in Mechanical Rooms): 2-inch wg. - b. Supply Ducts (Upstream from Air Terminal Units): 3-inch wg. - c. Supply Ducts (Downstream from Air Terminal Units): 1-inch wg. - d. Supply Ducts (in Mechanical Equipment Rooms): 2-inch wg. - e. Return Ducts (Negative Pressure): 1-inch wg. - f. Exhaust Ducts (Negative Pressure): 1-inch wg. - 2. Leakage Class: - a. Round Supply-Air Duct: 3 cfm/100 sq. ft. at 1-inch wg. - b. Flat-Oval Supply-Air Duct: 3 cfm/100 sq. ft. at 1-inch wg. - c. Rectangular Supply-Air Duct: 6 cfm/100 sq. ft. at 1-inch wg. - d. Flexible Supply-Air Duct: 6 cfm/100 sq. ft. at 1-inch wg. - B. Structural Performance: Duct hangers and supports and seismic restraints shall withstand the effects of gravity and seismic loads and stresses within limits and under conditions described in SMACNA's "HVAC Duct Construction Standards Metal and Flexible" SMACNA's "Seismic Restraint Manual: Guidelines for Mechanical Systems." - 1. Seismic Hazard Level A: Seismic force to weight ratio, 0.48. - 2. Seismic Hazard Level B: Seismic force to weight ratio, 0.30. - 3. Seismic Hazard Level C: Seismic force to weight ratio, 0.15. # 1.4 SUBMITTALS - A. Product Data: For each type of the following products: - 1. Liners and adhesives. - 2. Sealants and gaskets. - 3. Seismic-restraint devices. - B. Welding certificates. - C. Field quality-control reports. #### 1.5 QUALITY ASSURANCE - A. Welding Qualifications: Qualify procedures and personnel according to the following: - 1. AWS D1.1/D1.1M, "Structural Welding Code Steel," for hangers and supports. - 2. AWS D1.2/D1.2M, "Structural Welding Code Aluminum," for aluminum supports. - 3. AWS D9.1M/D9.1, "Sheet Metal Welding Code," for duct joint and seam welding. # **PART 2 - PRODUCTS** # 2.1 SINGLE-WALL RECTANGULAR DUCTS AND FITTINGS - A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" based on indicated static-pressure class unless otherwise indicated. - B. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-4, "Transverse (Girth) Joints," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." - C. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 1-5, "Longitudinal Seams Rectangular Ducts," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." - D. Elbows, Transitions, Offsets, Branch Connections, and Other Duct Construction: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Chapter 2, "Fittings and Other Construction," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards - Metal and Flexible." # 2.2 SINGLE-WALL ROUND AND FLAT-OVAL DUCTS AND FITTINGS - A. General Fabrication Requirements: Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Chapter 3, "Round, Oval, and Flexible Duct," based on indicated static-pressure class unless otherwise indicated. - 1. Manufacturers: Subject to compliance with requirements, available manufacturers offering products that may be incorporated into the Work include, but are not limited to, the following: - a. Lindab Inc. - b. McGill AirFlow LLC. - c. SEMCO Incorporated. - d. Sheet Metal Connectors, Inc. - e. Spiral Manufacturing Co., Inc. - f. Metco. - g. Prior approved equal. - B. Flat-Oval Ducts: Indicated dimensions are the duct width (major dimension) and diameter (diameter of the round sides connecting the flat portions of the duct). - C. Transverse Joints: Select joint types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-2, "Transverse Joints Round Duct," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." - 1. Transverse Joints in Ducts Larger Than 60 Inches in Diameter: Flanged. - D. Longitudinal Seams: Select seam types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-1, "Seams Round Duct and Fittings," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." - 1. Fabricate round ducts larger than 90 inches in diameter with butt-welded longitudinal seams. - 2. Fabricate flat-oval ducts larger than 72 inches in width (major dimension) with butt-welded longitudinal seams. - E. Tees and Laterals: Select types and fabricate according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Figure 3-4, "90 Degree Tees and Laterals," and Figure 3-5, "Conical Tees," for static-pressure class, applicable sealing requirements, materials involved, duct-support intervals, and other provisions in SMACNA's "HVAC Duct Construction Standards Metal and Flexible." # 2.3 SHEET METAL MATERIALS - A. General Material Requirements: Comply with
SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods unless otherwise indicated. Sheet metal materials shall be free of pitting, seam marks, roller marks, stains, discolorations, and other imperfections. - B. Galvanized Sheet Steel: Comply with ASTM A 653/A 653M. - 1. Galvanized Coating Designation: G60. - 2. Finishes for Surfaces Exposed to View: Mill phosphatized. - C. Reinforcement Shapes and Plates: ASTM A 36/A 36M, steel plates, shapes, and bars; black and galvanized. - Where black- and galvanized-steel shapes and plates are used to reinforce aluminum ducts, isolate the different metals with butyl rubber, neoprene, or EPDM gasket materials. - D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches. # 2.4 SEALANT AND GASKETS - A. General Sealant and Gasket Requirements: Surface-burning characteristics for sealants and gaskets shall be a maximum flame-spread index of 25 and a maximum smoke-developed index of 50 when tested according to UL 723; certified by an NRTL. - B. Water-Based Joint and Seam Sealant: - 1. Application Method: Brush on. - 2. Solids Content: Minimum 65 percent. - 3. Shore A Hardness: Minimum 20. - 4. Water resistant. - 5. Mold and mildew resistant. - 6. VOC: Maximum 75 g/L (less water). - 7. Maximum Static-Pressure Class: 10-inch wg, positive and negative. - 8. Service: Indoor or outdoor. - 9. Substrate: Compatible with galvanized sheet steel (both PVC coated and bare), stainless steel, or aluminum sheets. - C. Flanged Joint Sealant: Comply with ASTM C 920. - 1. General: Single-component, acid-curing, silicone, elastomeric. - 2. Type: S. - 3. Grade: NS. - 4. Class: 25. - 5. Use: O. - D. Flange Gaskets: Butyl rubber, neoprene, or EPDM polymer with polyisobutylene plasticizer. - E. Round Duct Joint O-Ring Seals: - 1. Seal shall provide maximum leakage class of 3 cfm/100 sq. ft. at 1-inch wg and shall be rated for 10-inch wg static-pressure class, positive or negative. - 2. EPDM O-ring to seal in concave bead in coupling or fitting spigot. - 3. Double-lipped, EPDM O-ring seal, mechanically fastened to factory-fabricated couplings and fitting spigots. # **PART 3 - EXECUTION** # 3.1 DUCT INSTALLATION - A. Drawing plans, schematics, and diagrams indicate general location and arrangement of duct system. Indicated duct locations, configurations, and arrangements were used to size ducts and calculate friction loss for air-handling equipment sizing and for other design considerations. Install duct systems as indicated unless deviations to layout are approved on Shop Drawings and Coordination Drawings. - B. Install ducts according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible" unless otherwise indicated. - C. Install round and flat-oval ducts in maximum practical lengths. - D. Install ducts with fewest possible joints. - E. Install factory- or shop-fabricated fittings for changes in direction, size, and shape and for branch connections. - F. Unless otherwise indicated, install ducts vertically and horizontally, and parallel and perpendicular to building lines. - G. Install ducts close to walls, overhead construction, columns, and other structural and permanent enclosure elements of building. - H. Install ducts with a clearance of 1 inch, plus allowance for insulation thickness. - I. Route ducts to avoid passing through transformer vaults and electrical equipment rooms and enclosures. - J. Where ducts pass through non-fire-rated interior partitions and exterior walls and are exposed to view, cover the opening between the partition and duct or duct insulation with sheet metal flanges of same metal thickness as the duct. Overlap openings on four sides by at least 1-1/2 inches. - K. Where ducts pass through fire-rated interior partitions and exterior walls, install fire dampers. Comply with requirements in Division 15 Section "Duct Accessories" for fire and smoke dampers. - L. Protect duct interiors from moisture, construction debris and dust, and other foreign materials. Comply with SMACNA's "Duct Cleanliness for New Construction Guidelines." # 3.2 SEAM AND JOINT SEALING - A. Seal duct seams and joints for duct static-pressure and leakage classes specified in "Performance Requirements" Article, according to SMACNA's "HVAC Duct Construction Standards Metal and Flexible," Table 1-2, "Standard Duct Sealing Requirements," unless otherwise indicated. - For static-pressure classes 1- and 1/2-inch wg, comply with SMACNA's "HVAC Duct Construction Standards - Metal and Flexible," Seal Class C, except as follows: - a. Ducts that are located directly in zones they serve. # 3.3 CONNECTIONS - A. Make connections to equipment with flexible connectors complying with Division 15 Section "Duct Accessories." - B. Comply with SMACNA's "HVAC Duct Construction Standards Metal and Flexible" for branch, outlet and inlet, and terminal unit connections. # 3.4 FIELD QUALITY CONTROL - A. Perform tests and inspections. - B. Leakage Tests: - 1. Comply with SMACNA's "HVAC Air Duct Leakage Test Manual." - 2. Test the following systems: - a. Supply air. - 3. Disassemble, reassemble, and seal segments of systems to accommodate leakage testing and for compliance with test requirements. - 4. Test for leaks before insulation application. - Conduct tests at static pressures equal to maximum design pressure of system or section being tested. If static-pressure classes are not indicated, test entire system at maximum system design pressure. Do not pressurize systems above maximum design operating pressure. Give seven days' advance notice for testing. - C. Duct System Cleanliness Tests: - 1. Visually inspect duct system to ensure that no visible contaminants are present. - 2. Test sections of metal duct system, chosen randomly by Owner, for cleanliness according to "Vacuum Test" in NADCA ACR, "Assessment, Cleaning and Restoration of HVAC Systems." - a. Acceptable Cleanliness Level: Net weight of debris collected on the filter media shall not exceed 0.75 mg/100 sq. cm. - D. Duct system will be considered defective if it does not pass tests and inspections. - E. Prepare test and inspection reports. # 3.5 DUCT SCHEDULE A. Fabricate ducts with galvanized sheet steel. **END OF SECTION 15815** # **SECTION 15820 - DUCT ACCESSORIES** #### **PART 1 - GENERAL** #### 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. #### 1.2 SUMMARY - A. This Section includes the following: - 1. Motorized control dampers. - 2. Flexible connectors. - 3. Duct accessory hardware. - B. Related Sections include the following: - 1. Division 15 Section "HVAC Instrumentation and Controls" for electric and pneumatic damper actuators. # 1.3 SUBMITTALS - A. Product Data: For the following: - 1. Motorized control dampers. - 2. Flexible connectors. # 1.4 QUALITY ASSURANCE A. Comply with NFPA 90A, "Installation of Air Conditioning and Ventilating Systems," and NFPA 90B, "Installation of Warm Air Heating and Air Conditioning Systems." # **PART 2 - PRODUCTS** # 2.1 MANUFACTURERS - A. In other Part 2 articles where titles below introduce lists, the following requirements apply to product selection: - 1. Available Manufacturers: Subject to compliance with requirements, manufacturers offering products that may be incorporated into the Work include, but are not limited to, manufacturers specified. 2. Manufacturers: Subject to compliance with requirements, provide products by one of the manufacturers specified. # 2.2 SHEET METAL MATERIALS - A. Comply with SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for acceptable materials, material thicknesses, and duct construction methods, unless otherwise indicated. - B. Galvanized Sheet Steel: Lock-forming quality; complying with ASTM A 653/A 653M and having G60 coating designation; ducts shall have mill-phosphatized finish for surfaces exposed to view. - C. Reinforcement Shapes and Plates: Galvanized-steel reinforcement where installed on galvanized sheet metal ducts; compatible materials for aluminum and stainless-steel ducts. - D. Tie Rods: Galvanized steel, 1/4-inch minimum diameter for lengths 36 inches or less; 3/8-inch minimum diameter for lengths longer than 36 inches. #### 2.3 MOTORIZED CONTROL DAMPERS ## A. Manufacturers: - 1. Air Balance, Inc. - 2. American Warming and Ventilating. - 3. CESCO Products. - 4. Duro Dyne Corp. - 5. Greenheck. - 6. McGill AirFlow Corporation. - 7. METALAIRE, Inc. - 8. Nailor Industries Inc. - 9. Penn Ventilation Company, Inc. - 10. Ruskin Company. - 11. Vent Products Company, Inc. - 12. Air Rite. - 13. Prior approved equal. - B. General Description: AMCA-rated, opposed-blade design; minimum of 0.1084-inch-thick, galvanized-steel frames with holes for duct mounting; minimum of 0.0635-inch-thick, galvanized-steel damper blades with maximum blade width of 8 inches. - 1. Secure blades to 1/2-inch- diameter, zinc-plated axles using zinc-plated hardware, with nylon blade bearings, blade-linkage hardware of zinc-plated steel and brass, ends sealed against spring-stainless-steel blade bearings, and thrust bearings at each end of every blade. - 2. Operating Temperature Range: From minus 40 to plus 200 deg F. - 3. Provide closed-cell neoprene edging. # 2.4 FLEXIBLE CONNECTORS #### A. Manufacturers: - 1. Ductmate Industries, Inc. - 2. Duro Dyne Corp. - 3. Ventfabrics, Inc. - 4. Ward Industries, Inc. - 5. Prior approved equal. - B. General Description: Flame-retardant or noncombustible fabrics, coatings, and adhesives complying with UL 181, Class 1. - C. Metal-Edged Connectors: Factory fabricated with a fabric strip 3-1/2 inches wide attached to two strips of 2-3/4-inch- wide, 0.028-inch- thick, galvanized sheet steel or 0.032-inch- thick aluminum sheets. Select metal
compatible with ducts. - D. Indoor System, Flexible Connector Fabric: Glass fabric double coated with neoprene. - 1. Minimum Weight: 26 oz./sq. yd... - 2. Tensile Strength: 480 lbf/inch in the warp and 360 lbf/inch in the filling. - 3. Service Temperature: Minus 40 to plus 200 deg F. - E. Outdoor System, Flexible Connector Fabric: Glass fabric double coated with weatherproof, synthetic rubber resistant to UV rays and ozone. - 1. Minimum Weight: 24 oz./sq. yd.. - 2. Tensile Strength: 530 lbf/inch in the warp and 440 lbf/inch in the filling. - 3. Service Temperature: Minus 50 to plus 250 deg F. # 2.5 DUCT ACCESSORY HARDWARE - A. Instrument Test Holes: Cast iron or cast aluminum to suit duct material, including screw cap and gasket. Size to allow insertion of pitot tube and other testing instruments and of length to suit duct insulation thickness. - B. Adhesives: High strength, quick setting, neoprene based, waterproof, and resistant to gasoline and grease. #### **PART 3 - EXECUTION** #### 3.1 APPLICATION AND INSTALLATION A. Install duct accessories according to applicable details in SMACNA's "HVAC Duct Construction Standards--Metal and Flexible" for metal ducts and in NAIMA AH116, "Fibrous Glass Duct Construction Standards," for fibrous-glass ducts. - B. Provide duct accessories of materials suited to duct materials; use galvanized-steel accessories in galvanized-steel and fibrous-glass ducts, stainless-steel accessories in stainless-steel ducts, and aluminum accessories in aluminum ducts. - C. Provide test holes at fan inlets and outlets and elsewhere as indicated. - D. Install flexible connectors immediately adjacent to equipment in ducts associated with fans and motorized equipment supported by vibration isolators. - E. For fans developing static pressures of 5-inch wg and higher, cover flexible connectors with loaded vinyl sheet held in place with metal straps. - F. Install duct test holes where indicated and required for testing and balancing purposes. # 3.2 ADJUSTING A. Adjust duct accessories for proper settings. **END OF SECTION 15820** ## **SECTION 15900 - HVAC INSTRUMENTATION AND CONTROLS** #### **PART 1 - GENERAL** #### 1.1 SCOPE OF WORK - A. The scope of work shall include all labor, material, and equipment necessary to remove and replace the existing packaged dual duct rooftop unit, and reconnect to the existing building automation system. - B. The existing TAC DDC control system will be modified to include the new rooftop unit, TAC (I/NET) DDC control system and related mechanical systems. The temperature control system and modifications shall be installed and certified by Utah Controls utilizing TAC Controls (I/NET). #### 1.2 DEMOLITION - A. The existing TAC DDC control equipment and associated programming for the rooftop unit shall be modified by the ATC contractor. Any pneumatic tubing that is inadvertently removed but required to serve the final installation shall be reinstalled at no additional cost to the owner. - B. All unused equipment, wiring, devices, tubing, etc. that is rendered inoperative as a result of this contract shall be removed from the building and turned over to the owner or disposed of as directed. # 1.3 WORK TO BE PERFORMED BY OTHERS A. Note that all mechanical equipment requiring control is currently installed and operating under the current DDC control and pneumatic controls. It is not anticipated that additional electrical power wiring will be required for this equipment. However any line voltage power required for control devices including control panels shall be furnished under Division 16 including all 120 volt single phase electrical power wiring where noted. ATC contractor shall be responsible for step down transformers and 24 VAC wiring to ATC equipment. # 1.4 ELECTRICAL WIRING, PNEUMATIC TUBING - A. All power wiring to control panels will be done by the division 16 contractor as noted above. The ATC contractor shall hold a valid electrical license for the State of Utah and shall install all wiring and conduit for the DDC system. - B. All concealed non-accessible control wiring shall be installed in ¾" conduit and in accordance with the National Electrical Code. At the contractor's option the existing control conduit may be re-used where possible as long as the installation meets current code. - C. The ATC contractor shall perform the pneumatic air system extension within the mechanical room. New copper tubing or new poly tubing run in ¾" conduit shall be supplied and installed. The routing of the pneumatic airline from the new compressor location to the distribution location shall not inter fear with the new chiller-piping configuration. The ATC contractor shall route the new line to prevent routing conflict with the new system. #### 1.5 SUBMITTALS A. The Contractor shall submit, within 30 days after award of contract, a complete submittal package. This submittal shall contain six (6) copies of complete literature on all control equipment including control diagrams as per the sequence of operation. ## 1.6 PROJECT MANAGEMENT - A. Provide a designated project manager who will be responsible for the following: - 1. Maintain a current project schedule. - 2. On-site coordination with other applicable trades. - 3. Attend project meetings. - 4. Make necessary field decisions. ## 1.7 WARRANTY A. Provide all services, materials and equipment necessary for a one-year period after beneficial use has been established. #### 1.8 TRAINING A. Training will consist of a total of 2 hours. The training will include the new control system additions, flat plate control system modifications and proper manual operation of the flat plate system. # **PART 2 - PRODUCTS AND EQUIPMENT** #### 2.1 MANUFACTURERS A. Provide an extension and/or modification of the existing TAC Direct Digital Control (DDC) system as described herein. This DDC system shall be compatible with and tied into the existing State of Utah network via a new TAC NetPlus Router. The new system shall be installed, programmed and commissioned by Utah Controls Inc. # 2.2 BUILDING MANAGEMENT SYSTEM (BMS) A. This section shall provide complete graphic and programming modifications as necessary. The existing TAC (I/NET) system shall be modified to incorporate the additions and deletions of this project. The DDC programming shall be in a graphic page format to permit the operator access to the control programming flow in block format. The programming may be accessed and modified from the graphic page and will not require separate software packages or 3rd party interfaces to access or edit. # 2.3 TEMPERATURE SENSORS A. Provide thermistor or thin film silicon sensors for all temperature applications, except differential hot water for BTU calculation, where precision matched Platinum RTDs shall be used. Solid-state sensors shall be linear, drift free, and require only a one-time calibration. A look-up table in the connected controller shall linearize thermistors or similar non-linear temperature devices. # **PART 3 - EXECUTION** # 3.1 (Not Used) # **PART 4 - SEQUENCE OF CONTROL** # 4.1 Dual Duct - AHU (typical of 1) - A. Run Conditions Requested: - 1. The unit shall run whenever: - a. Any zone is occupied. - b. Or a definable number of unoccupied zones need heating or cooling. # B. EmergencyShutdown: 1. The unit shall shut down and generate an alarm upon receiving an emergency shutdown signal. #### C. Freeze Protection: 1. The unit shall shut down and generate an alarm upon receiving a freezestat status. # D. High Static Shutdown: 1. The unit shall shut down and generate an alarm upon receiving an high static shutdown signal. # E. Return Air Smoke Detection: 1. The unit shall shut down and generate an alarm upon receiving a return air smoke detector status. # F. Supply Air Smoke Detection: 1. The unit shall shut down and generate an alarm upon receiving a supply air smoke detector status. # G. AHU Optimal Start: The unit shall start prior to scheduled occupancy based on the time necessary for the zones to reach their occupied setpoints. The start time shall automatically adjust based on changes in outside air temperature and zone temperatures. # H. Supply Fan: - 1. The supply fan shall run anytime the unit is commanded to run, unless shutdown on safeties. To prevent short cycling, the supply fan shall have a user definable (adj.) minimum runtime. - I. Alarms shall be provided as follows: - 1. Supply Fan Failure: Commanded on, but the status is off. - 2. Supply Fan in Hand: Commanded off, but the status is on. - J. Supply Air Duct Static Pressure Control: - 1. The controller shall take the lowest of the two duct static pressure readings from the cold and hot ducts and shall modulate the supply fan VFD speed to maintain a duct static pressure setpoint of 1.5in H_2O (adj.). The supply fan VFD speed shall not drop below 30% (adj.). - 2. Alarms shall be provided as follows: - a. High Supply Air Static Pressure: If the supply air static pressure is 25% (adj.) greater than setpoint. - b. Low Supply Air Static Pressure: If the supply air static pressure is 25% (adj.) less than setpoint. - c. Supply Fan VFD Fault. - K. Cold Deck Cooling Supply Air Temperature Setpoint Optimized: Alarms shall be provided as follows: - 1. The cooling supply air temperature setpoint shall be reset based on zone cooling requirements as follows: - a. The initial cooling supply air temperature setpoint shall be 55°F (adj.). - b. As cooling demand increases, the setpoint shall incrementally reset down to a minimum of 53°F (adj.). - c. As cooling demand decreases, the setpoint shall incrementally reset up to a maximum of 72°F (adi.). - L. Cold Deck packaged DX section: - 1. The unit factory controls shall measure the cooling supply air temperature and modulate the cooling to maintain its cooling setpoint. - 2. The cooling shall be enabled whenever: - a. Outside air temperature is greater than 60°F (adj.). - b. AND the economizer (if present) is disabled or fully
open. - c. AND the supply fan status is on. - 3. Alarms shall be provided as follows: - a. High Cooling Supply Air Temp: If the cooling supply air temperature is 5°F (adj.) greater than setpoint - M. Hot Deck Heating Supply Air Temperature Setpoint Optimized: - 1. The heating supply air temperature setpoint shall be reset based on zone heating requirements as follows: - a. The initial heating supply air temperature setpoint shall be 82°F (adj.). - b. As heating demand increases, the setpoint shall incrementally reset up to a maximum of 90°F (adj.). - c. As heating demand decreases, the setpoint shall incrementally reset down to a minimum of 72°F (adj.). - N. Hot Deck Heating Coil Valve: - 1. The controller shall measure the heating supply air temperature and modulate the heating coil valve to maintain its setpoint. - 2. The heating shall be enabled whenever: - a. Outside air temperature is less than 65°F (adj.). - b. AND the supply fan status is on. - 3. The heating coil valve shall open whenever: - a. Heating supply air temperature drops from 40°F to 35°F (adj.). - b. OR the freezestat (if present) is on. - 4. Alarms shall be provided as follows: - a. High Heating Supply Air Temp: If the heating supply air temperature is greater than 120°F (adj.). - b. Low Heating Supply Air Temp: If the heating supply air temperature is 5°F (adj.) less than setpoint. # O. Economizer: - 1. The controller shall measure the mixed air temperature and modulate the economizer dampers in sequence to maintain a setpoint 2°F less than the cooling supply air temperature setpoint. The outside air dampers shall maintain a minimum adjustable position of 20% (adj.) open whenever occupied. - 2. The economizer shall be enabled whenever: - a. Outside air temperature is less than 65°F (adj.). - b. AND the outside air temperature is less than the return air temperature. - c. AND the supply fan status is on. - 3. The economizer shall close whenever: - a. Mixed air temperature drops from 40°F to 35°F (adj.). - b. OR on loss of supply fan status. - c. OR the freezestat (if present) is on. - 4. The outside and exhaust air dampers shall close and the return air damper shall open when the unit is off. If Optimal Start Up is available the mixed air damper shall operate as described in the occupied mode except that the outside air damper shall modulate to fully closed. - P. Minimum Outside Air Ventilation Fixed Percentage: - 1. The outside air dampers shall maintain a minimum adjustable position during building occupied hours and be closed during unoccupied hours. - Q. Prefilter Status: - 1. The controller shall monitor the prefilter status. - 2. Alarms shall be provided as follows: - a. Prefilter Change Required: Prefilter differential pressure exceeds a user definable limit (adj.). - R. Mixed Air Temperature: The controller shall monitor the mixed air temperature and use as required for economizer control (if present) or preheating control (if present). - 1. Alarms shall be provided as follows: - a. Prefilter Change Required: Prefilter differential pressure exceeds a user definable limit (adj.). - b. High Mixed Air Temp: If the mixed air temperature is greater than 90°F (adj.). - c. Low Mixed Air Temp: If the mixed air temperature is less than 45°F (adi.). - S. Return Air Carbon Dioxide (CO2) Concentration Monitoring: - 1. The controller shall measure the return air CO2 levels. - 2. Alarms shall be provided as follows: - a. High Return Air Carbon Dioxide Concentration: If the return air CO2 concentration is greater than 1000ppm (adj.) when in the unit is running. - T. Return Air Temperature: - 1. The controller shall monitor the return air temperature and use as required for economizer control (if present). - 2. Alarms shall be provided as follows: - a. High Return Air Temp: If the return air temperature is greater than 90°F (adj.). - b. Low Return Air Temp: If the return air temperature is less than 45°F (adj.). **END OF SECTION 15900** # **SECTION 15950 - TESTING, ADJUSTING, AND BALANCING** #### **PART 1 - GENERAL** # 1.1 RELATED DOCUMENTS A. Drawings and general provisions of the Contract, including General and Supplementary Conditions and Division 1 Specification Sections, apply to this Section. # 1.2 SUMMARY - A. This Section includes TAB to produce design objectives for the following: - 1. Air Systems: - a. Constant-volume air systems. - b. Dual-duct systems. - 2. Hydronic Piping Systems: - a. Constant-flow systems. - 3. Existing systems TAB. - 4. Verifying that automatic control devices are functioning properly. - 5. Reporting results of activities and procedures specified in this Section. # 1.3 **DEFINITIONS** - A. Adjust: To regulate fluid flow rate and air patterns at the terminal equipment, such as to reduce fan speed or adjust a damper. - B. Balance: To proportion flows within the distribution system, including submains, branches, and terminals, according to indicated quantities. - C. Barrier or Boundary: Construction, either vertical or horizontal, such as walls, floors, and ceilings that are designed and constructed to restrict the movement of airflow, smoke, odors, and other pollutants. - D. Draft: A current of air, when referring to localized effect caused by one or more factors of high air velocity, low ambient temperature, or direction of airflow, whereby more heat is withdrawn from a person's skin than is normally dissipated. - E. NC: Noise criteria. - F. Procedure: An approach to and execution of a sequence of work operations to yield repeatable results. - G. RC: Room criteria. - H. Report Forms: Test data sheets for recording test data in logical order. - I. Suction Head: The height of fluid surface above the centerline of the pump on the suction side. - J. System Effect: A phenomenon that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. - K. System Effect Factors: Allowances used to calculate a reduction of the performance ratings of a fan when installed under conditions different from those presented when the fan was performance tested. - L. TAB: Testing, adjusting, and balancing. - M. Terminal: A point where the controlled medium, such as fluid or energy, enters or leaves the distribution system. - N. Test: A procedure to determine quantitative performance of systems or equipment. - O. Testing, Adjusting, and Balancing (TAB) Firm: The entity responsible for performing and reporting TAB procedures. #### 1.4 SUBMITTALS - A. Qualification Data: Within 15 days from Contractor's Notice to Proceed, submit 4 copies of evidence that TAB firm and this Project's TAB team members meet the qualifications specified in "Quality Assurance" Article. - B. Contract Documents Examination Report: Within 30 days from Contractor's Notice to Proceed, submit 4 copies of the Contract Documents review report as specified in Part 3. - C. Strategies and Procedures Plan: Within 60 days from Contractor's Notice to Proceed, submit 4 copies of TAB strategies and step-by-step procedures as specified in Part 3 "Preparation" Article. Include a complete set of report forms intended for use on this Project. - D. Certified TAB Reports: Submit two copies of reports prepared, as specified in this Section, on approved forms certified by TAB firm. - E. Sample Report Forms: Submit two sets of sample TAB report forms. - F. Warranties specified in this Section. # 1.5 QUALITY ASSURANCE A. TAB Firm Qualifications: Engage a TAB firm certified by AABC or NEBB. - B. TAB Conference: Meet with Owner's and Architect's representatives on approval of TAB strategies and procedures plan to develop a mutual understanding of the details. Ensure the participation of TAB team members, equipment manufacturers' authorized service representatives, HVAC controls installers, and other support personnel. Provide seven days' advance notice of scheduled meeting time and location. - 1. Agenda Items: Include at least the following: - a. Submittal distribution requirements. - b. The Contract Documents examination report. - c. TAB plan. - d. Work schedule and Project-site access requirements. - e. Coordination and cooperation of trades and subcontractors. - f. Coordination of documentation and communication flow. - C. Certification of TAB Reports: Certify TAB field data reports. This certification includes the following: - 1. Review field data reports to validate accuracy of data and to prepare certified TAB reports. - 2. Certify that TAB team complied with approved TAB plan and the procedures specified and referenced in this Specification. - D. TAB Report Forms: Use standard forms from AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems." - E. Instrumentation Type, Quantity, and Accuracy: As described in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems," Section II, "Required Instrumentation for NEBB Certification." - F. Instrumentation Calibration: Calibrate instruments at least every six months or more frequently if required by instrument manufacturer. - 1. Keep an updated record of instrument calibration that indicates date of calibration and the name of party performing instrument calibration. - G. Approved TAB agencies: - 1. Bonneville Test and Balance. - 2. BTC Services. - 3. Certified Test and Balance. - 4. Danis Test and Balance. - 5. Intermountain Test and Balance. - 6. RS Analysis. - 7. Technical Specialties. - 8. Testing and Balancing, Inc. # 1.6 PROJECT CONDITIONS - A. Full Owner Occupancy: Owner will occupy the site and existing building during entire TAB period. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations. - B. Partial Owner Occupancy: Owner may occupy completed areas of building before
Substantial Completion. Cooperate with Owner during TAB operations to minimize conflicts with Owner's operations. # 1.7 COORDINATION - A. Coordinate the efforts of factory-authorized service representatives for systems and equipment, HVAC controls installers, and other mechanics to operate HVAC systems and equipment to support and assist TAB activities. - B. Notice: Provide seven days' advance notice for each test. Include scheduled test dates and times. - C. Perform TAB after leakage and pressure tests on air and water distribution systems have been satisfactorily completed. # 1.8 WARRANTY - A. National Project Performance Guarantee: Provide a guarantee on AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" forms stating that AABC will assist in completing requirements of the Contract Documents if TAB firm fails to comply with the Contract Documents. Guarantee includes the following provisions: - 1. The certified TAB firm has tested and balanced systems according to the Contract Documents. - 2. Systems are balanced to optimum performance capabilities within design and installation limits. # **PART 2 - PRODUCTS** (Not Applicable) #### **PART 3 - EXECUTION** ## 3.1 **EXAMINATION** A. Examine the Contract Documents to become familiar with Project requirements and to discover conditions in systems' designs that may preclude proper TAB of systems and equipment. - 1. Contract Documents are defined in the General and Supplementary Conditions of Contract. - Verify that balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are required by the Contract Documents. Verify that quantities and locations of these balancing devices are accessible and appropriate for effective balancing and for efficient system and equipment operation. - B. Examine approved submittal data of HVAC systems and equipment. - C. Examine Project Record Documents described in Division 1 Section "Project Record Documents." - D. Examine design data, including HVAC system descriptions, statements of design assumptions for environmental conditions and systems' output, and statements of philosophies and assumptions about HVAC system and equipment controls. - E. Examine equipment performance data including fan and pump curves. Relate performance data to Project conditions and requirements, including system effects that can create undesired or unpredicted conditions that cause reduced capacities in all or part of a system. Calculate system effect factors to reduce performance ratings of HVAC equipment when installed under conditions different from those presented when the equipment was performance tested at the factory. To calculate system effects for air systems, use tables and charts found in AMCA 201, "Fans and Systems," Sections 7 through 10; or in SMACNA's "HVAC Systems--Duct Design," Sections 5 and 6. Compare this data with the design data and installed conditions. - F. Examine system and equipment installations to verify that they are complete and that testing, cleaning, adjusting, and commissioning specified in individual Sections have been performed. - G. Examine system and equipment test reports. - H. Examine HVAC system and equipment installations to verify that indicated balancing devices, such as test ports, gage cocks, thermometer wells, flow-control devices, balancing valves and fittings, and manual volume dampers, are properly installed, and that their locations are accessible and appropriate for effective balancing and for efficient system and equipment operation. - I. Examine systems for functional deficiencies that cannot be corrected by adjusting and balancing. - J. Examine HVAC equipment to ensure that clean filters have been installed, bearings are greased, belts are aligned and tight, and equipment with functioning controls is ready for operation. - K. Examine terminal units, such as variable-air-volume boxes, to verify that they are accessible and their controls are connected and functioning. - L. Examine plenum ceilings used for supply air to verify that they are airtight. Verify that pipe penetrations and other holes are sealed. - M. Examine strainers for clean screens and proper perforations. - N. Examine three-way valves for proper installation for their intended function of diverting or mixing fluid flows. - O. Examine heat-transfer coils for correct piping connections and for clean and straight fins. - P. Examine system pumps to ensure absence of entrained air in the suction piping. - Q. Examine equipment for installation and for properly operating safety interlocks and controls. - R. Examine automatic temperature system components to verify the following: - 1. Dampers, valves, and other controlled devices are operated by the intended controller. - 2. Dampers and valves are in the position indicated by the controller. - 3. Integrity of valves and dampers for free and full operation and for tightness of fully closed and fully open positions. This includes dampers in multizone units, mixing boxes, and variable-air-volume terminals. - 4. Automatic modulating and shutoff valves, including two-way valves and three-way mixing and diverting valves, are properly connected. - 5. Thermostats and humidistats are located to avoid adverse effects of sunlight, drafts, and cold walls. - 6. Sensors are located to sense only the intended conditions. - 7. Sequence of operation for control modes is according to the Contract Documents. - 8. Controller set points are set at indicated values. - 9. Interlocked systems are operating. - 10. Changeover from heating to cooling mode occurs according to indicated values. - S. Report deficiencies discovered before and during performance of TAB procedures. Observe and record system reactions to changes in conditions. Record default set points if different from indicated values. # 3.2 PREPARATION - A. Prepare a TAB plan that includes strategies and step-by-step procedures. - B. Complete system readiness checks and prepare system readiness reports. Verify the following: - 1. Permanent electrical power wiring is complete. - 2. Hydronic systems are filled, clean, and free of air. - 3. Automatic temperature-control systems are operational. - 4. Equipment and duct access doors are securely closed. - 5. Balance, smoke, and fire dampers are open. - 6. Isolating and balancing valves are open and control valves are operational. - 7. Ceilings are installed in critical areas where air-pattern adjustments are required and access to balancing devices is provided. - 8. Windows and doors can be closed so indicated conditions for system operations can be met. # 3.3 GENERAL PROCEDURES FOR TESTING AND BALANCING - A. Perform testing and balancing procedures on each system according to the procedures contained in AABC's "National Standards for Testing and Balancing Heating, Ventilating, and Air Conditioning Systems" or NEBB's "Procedural Standards for Testing, Adjusting, and Balancing of Environmental Systems" and this Section. - B. Cut insulation, ducts, pipes, and equipment cabinets for installation of test probes to the minimum extent necessary to allow adequate performance of procedures. After testing and balancing, close probe holes and patch insulation with new materials identical to those removed. Restore vapor barrier and finish according to insulation Specifications for this Project. - C. Mark equipment and balancing device settings with paint or other suitable, permanent identification material, including damper-control positions, valve position indicators, fanspeed-control levers, and similar controls and devices, to show final settings. - D. Take and report testing and balancing measurements in inch-pound (IP) units. #### 3.4 GENERAL PROCEDURES FOR BALANCING AIR SYSTEMS - A. Prepare test reports for both fans and outlets. Obtain manufacturer's outlet factors and recommended testing procedures. Crosscheck the summation of required outlet volumes with required fan volumes. - B. Prepare schematic diagrams of systems' "as-built" duct layouts. - C. For variable-air-volume systems, develop a plan to simulate diversity. - D. Determine the best locations in main and branch ducts for accurate duct airflow measurements. - E. Check airflow patterns from the outside-air louvers and dampers and the return- and exhaust-air dampers, through the supply-fan discharge and mixing dampers. - F. Locate start-stop and disconnect switches, electrical interlocks, and motor starters. - G. Verify that motor starters are equipped with properly sized thermal protection. - H. Check dampers for proper position to achieve desired airflow path. - I. Check for airflow blockages. - J. Check condensate drains for proper connections and functioning. - K. Check for proper sealing of air-handling unit components. - L. Check for proper sealing of air duct system. # 3.5 PROCEDURES FOR CONSTANT-VOLUME AIR SYSTEMS - A. Adjust fans to deliver total indicated airflows within the maximum allowable fan speed listed by fan manufacturer. - 1. Measure fan static pressures to determine actual static pressure as follows: - a. Measure outlet static pressure as far downstream from the fan as practicable and upstream from restrictions in ducts such as elbows and transitions. - b. Measure static pressure directly at the fan outlet or through the flexible connection. - c. Measure inlet static pressure of single-inlet fans in the inlet duct as near the fan as possible, upstream from flexible connection and downstream from duct restrictions. - d. Measure inlet static pressure of double-inlet fans through the wall of the plenum that houses the fan. - 2. Measure static pressure across each component that makes up an air-handling unit, rooftop unit, and other air-handling and -treating equipment. - a. Simulate dirty filter operation and record the point at which maintenance personnel must change filters. - 3. Measure static
pressures entering and leaving other devices such as sound traps, heat recovery equipment, and air washers, under final balanced conditions. - 4. Compare design data with installed conditions to determine variations in design static pressures versus actual static pressures. Compare actual system effect factors with calculated system effect factors to identify where variations occur. Recommend corrective action to align design and actual conditions. - 5. Obtain approval from Architect for adjustment of fan speed higher or lower than indicated speed. Make required adjustments to pulley sizes, motor sizes, and electrical connections to accommodate fan-speed changes. - 6. Do not make fan-speed adjustments that result in motor overload. Consult equipment manufacturers about fan-speed safety factors. Modulate dampers and measure fan-motor amperage to ensure that no overload will occur. Measure amperage in full cooling, full heating, economizer, and any other operating modes to determine the maximum required brake horsepower. - B. Adjust volume dampers for main duct, submain ducts, and major branch ducts to indicated airflows within specified tolerances. - 1. Measure static pressure at a point downstream from the balancing damper and adjust volume dampers until the proper static pressure is achieved. - a. Where sufficient space in submain and branch ducts is unavailable for Pitot-tube traverse measurements, measure airflow at terminal outlets and inlets and calculate the total airflow for that zone. - 2. Remeasure each submain and branch duct after all have been adjusted. Continue to adjust submain and branch ducts to indicated airflows within specified tolerances. - C. Measure terminal outlets and inlets without making adjustments. - 1. Measure terminal outlets using a direct-reading hood or outlet manufacturer's written instructions and calculating factors. - D. Adjust terminal outlets and inlets for each space to indicated airflows within specified tolerances of indicated values. Make adjustments using volume dampers rather than extractors and the dampers at air terminals. - 1. Adjust each outlet in same room or space to within specified tolerances of indicated quantities without generating noise levels above the limitations prescribed by the Contract Documents. - 2. Adjust patterns of adjustable outlets for proper distribution without drafts. # 3.6 PROCEDURES FOR DUAL-DUCT SYSTEMS - A. Verify that the cooling coil is capable of full-system airflow, and set mixing boxes at full-cold airflow position for fan volume. - B. Measure static pressure in both hot and cold ducts at the end of the longest duct run to determine that sufficient static pressure exists to operate mixing-box controls and to overcome resistance in the ducts and outlets downstream from mixing box. - 1. If insufficient static pressure exists, increase the airflow at the fan. - C. Test and adjust the constant-volume mixing boxes as follows: - 1. Verify both hot and cold operations by adjusting the thermostat and observing the air temperature and volume changes. - 2. Verify sufficient inlet static pressure before making volume adjustments. - 3. Adjust mixing box to indicated airflows within specified tolerances. Measure the airflow by Pitot-tube traverse readings, totaling the airflow of the outlets; or by measuring static pressure at mixing-box taps if provided by box manufacturer. - D. Remeasure static pressure in both hot and cold ducts at the end of the longest duct run to determine that sufficient static pressure exists to operate mixing-box controls and to overcome resistance in the ducts and outlets downstream from mixing box. - E. Adjust variable-air-volume, dual-duct systems in the same way as constant-volume dual-duct systems, and adjust each mixing-box maximum- and minimum-airflow settings. # 3.7 GENERAL PROCEDURES FOR HYDRONIC SYSTEMS - A. Prepare test reports with pertinent design data and number in sequence starting at pump to end of system. Check the sum of branch-circuit flows against approved pump flow rate. Correct variations that exceed plus or minus 5 percent. - B. Prepare schematic diagrams of systems' "as-built" piping layouts. - C. Prepare hydronic systems for testing and balancing according to the following, in addition to the general preparation procedures specified above: - 1. Open all manual valves for maximum flow. - 2. Check expansion tank liquid level. - 3. Check makeup-water-station pressure gage for adequate pressure for highest vent. - 4. Check flow-control valves for specified sequence of operation and set at indicated flow. - 5. Set differential-pressure control valves at the specified differential pressure. Do not set at fully closed position when pump is positive-displacement type unless several terminal valves are kept open. - 6. Set system controls so automatic valves are wide open to heat exchangers. - 7. Check pump-motor load. If motor is overloaded, throttle main flow-balancing device so motor nameplate rating is not exceeded. - 8. Check air vents for a forceful liquid flow exiting from vents when manually operated. #### 3.8 PROCEDURES FOR HYDRONIC SYSTEMS - A. Measure water flow at pumps. Use the following procedures, except for positive-displacement pumps: - 1. Verify impeller size by operating the pump with the discharge valve closed. Read pressure differential across the pump. Convert pressure to head and correct for differences in gage heights. Note the point on manufacturer's pump curve at zero flow and verify that the pump has the intended impeller size. - 2. Check system resistance. With all valves open, read pressure differential across the pump and mark pump manufacturer's head-capacity curve. Adjust pump discharge valve until indicated water flow is achieved. - Verify pump-motor brake horsepower. Calculate the intended brake horsepower for the system based on pump manufacturer's performance data. Compare calculated brake horsepower with nameplate data on the pump motor. Report conditions where actual amperage exceeds motor nameplate amperage. - 4. Report flow rates that are not within plus or minus 5 percent of design. - B. Set calibrated balancing valves, if installed, at calculated presettings. - C. Measure flow at all stations and adjust, where necessary, to obtain first balance. - 1. System components that have Cv rating or an accurately cataloged flow-pressure-drop relationship may be used as a flow-indicating device. - D. Measure flow at main balancing station and set main balancing device to achieve flow that is 5 percent greater than indicated flow. - E. Adjust balancing stations to within specified tolerances of indicated flow rate as follows: - 1. Determine the balancing station with the highest percentage over indicated flow. - 2. Adjust each station in turn, beginning with the station with the highest percentage over indicated flow and proceeding to the station with the lowest percentage over indicated flow. - 3. Record settings and mark balancing devices. - F. Measure pump flow rate and make final measurements of pump amperage, voltage, rpm, pump heads, and systems' pressures and temperatures including outdoor-air temperature. - G. Measure the differential-pressure control valve settings existing at the conclusions of balancing. # 3.9 PROCEDURES FOR MOTORS - A. Motors, 1/2 HP and Larger: Test at final balanced conditions and record the following data: - 1. Manufacturer, model, and serial numbers. - 2. Motor horsepower rating. - 3. Motor rpm. - 4. Efficiency rating. - 5. Nameplate and measured voltage, each phase. - 6. Nameplate and measured amperage, each phase. - 7. Starter thermal-protection-element rating. - B. Motors Driven by Variable-Frequency Controllers: Test for proper operation at speeds varying from minimum to maximum. Test the manual bypass for the controller to prove proper operation. Record observations, including controller manufacturer, model and serial numbers, and nameplate data. # 3.10 PROCEDURES FOR CONDENSING UNITS - A. Verify proper rotation of fans. - B. Measure entering- and leaving-air temperatures. - C. Record compressor data. # 3.11 PROCEDURES FOR HEAT-TRANSFER COILS A. Water Coils: Measure the following data for each coil: - 1. Entering- and leaving-water temperature. - 2. Water flow rate. - Water pressure drop. - 4. Dry-bulb temperature of entering and leaving air. - 5. Wet-bulb temperature of entering and leaving air for cooling coils. - 6. Airflow. - 7. Air pressure drop. - B. Refrigerant Coils: Measure the following data for each coil: - 1. Dry-bulb temperature of entering and leaving air. - 2. Wet-bulb temperature of entering and leaving air. - Airflow. - 4. Air pressure drop. - 5. Refrigerant suction pressure and temperature. #### 3.12 PROCEDURES FOR TEMPERATURE MEASUREMENTS - A. During TAB, report the need for adjustment in temperature regulation within the automatic temperature-control system. - B. Measure indoor wet- and dry-bulb temperatures every other hour for a period of two successive eight-hour days, in each separately controlled zone, to prove correctness of final temperature settings. Measure when the building or zone is occupied. - C. Measure outside-air, wet- and dry-bulb temperatures. # 3.13 PROCEDURES FOR TESTING, ADJUSTING, AND BALANCING EXISTING SYSTEMS - A. Perform a preconstruction inspection of existing equipment that is to remain and be reused. - 1. Measure and record the operating speed, airflow, and static pressure of each fan - 2. Measure motor voltage and amperage. Compare the values to motor nameplate information. - 3. Check the refrigerant charge. - 4. Check the condition of filters. - 5. Check the condition of coils. - 6. Check the operation of the drain pan and condensate drain trap. - 7. Check bearings and other lubricated parts for proper lubrication. - 8. Report on the operating condition of the equipment and the results of the measurements taken. Report deficiencies. - B. Before performing testing and balancing of
existing systems, inspect existing equipment that is to remain and be reused to verify that existing equipment has been cleaned and refurbished. - 1. New filters are installed. - 2. Coils are clean and fins combed. - 3. Drain pans are clean. - 4. Fans are clean. - 5. Bearings and other parts are properly lubricated. - 6. Deficiencies noted in the preconstruction report are corrected. - C. Perform testing and balancing of existing systems to the extent that existing systems are affected by the renovation work. - 1. Compare the indicated airflow of the renovated work to the measured fan airflows and determine the new fan, speed, filter, and coil face velocity. - 2. Verify that the indicated airflows of the renovated work result in filter and coil face velocities and fan speeds that are within the acceptable limits defined by equipment manufacturer. - 3. If calculations increase or decrease the airflow and water flow rates by more than 5 percent, make equipment adjustments to achieve the calculated airflow and water flow rates. If 5 percent or less, equipment adjustments are not required. - 4. Air balance each air outlet. # 3.14 TEMPERATURE-CONTROL VERIFICATION - A. Verify that controllers are calibrated and commissioned. - B. Check transmitter and controller locations and note conditions that would adversely affect control functions. - C. Record controller settings and note variances between set points and actual measurements. - D. Check the operation of limiting controllers (i.e., high- and low-temperature controllers). - E. Check free travel and proper operation of control devices such as damper and valve operators. - F. Check the sequence of operation of control devices. Note air pressures and device positions and correlate with airflow and water flow measurements. Note the speed of response to input changes. - G. Check the interaction of electrically operated switch transducers. - H. Check the interaction of interlock and lockout systems. - I. Check main control supply-air pressure and observe compressor and dryer operations. - J. Record voltages of power supply and controller output. Determine whether the system operates on a grounded or nongrounded power supply. - K. Note operation of electric actuators using spring return for proper fail-safe operations. # 3.15 TOLERANCES - A. Set HVAC system airflow and water flow rates within the following tolerances: - 1. Supply, Return, and Exhaust Fans and Equipment with Fans: Plus 5 to plus 10 percent. - 2. Air Outlets and Inlets: 0 to minus 10 percent. - 3. Heating-Water Flow Rate: 0 to minus 10 percent. - 4. Cooling-Water Flow Rate: 0 to minus 5 percent. #### 3.16 REPORTING - A. Initial Construction-Phase Report: Based on examination of the Contract Documents as specified in "Examination" Article, prepare a report on the adequacy of design for systems' balancing devices. Recommend changes and additions to systems' balancing devices to facilitate proper performance measuring and balancing. Recommend changes and additions to HVAC systems and general construction to allow access for performance measuring and balancing devices. - B. Status Reports: As Work progresses, prepare reports to describe completed procedures, procedures in progress, and scheduled procedures. Include a list of deficiencies and problems found in systems being tested and balanced. Prepare a separate report for each system and each building floor for systems serving multiple floors. # 3.17 FINAL REPORT - A. General: Typewritten, or computer printout in letter-quality font, on standard bond paper, in three-ring binder, tabulated and divided into sections by tested and balanced systems. - B. Include a certification sheet in front of binder signed and sealed by the certified testing and balancing engineer. - 1. Include a list of instruments used for procedures, along with proof of calibration. - C. Final Report Contents: In addition to certified field report data, include the following: - 1. Pump curves. - 2. Fan curves. - 3. Manufacturers' test data. - 4. Field test reports prepared by system and equipment installers. - 5. Other information relative to equipment performance, but do not include Shop Drawings and Product Data. - D. General Report Data: In addition to form titles and entries, include the following data in the final report, as applicable: - 1. Title page. - 2. Name and address of TAB firm. - 3. Project name. - 4. Project location. - 5. Architect's name and address. - 6. Engineer's name and address. - 7. Contractor's name and address. - 8. Report date. - 9. Signature of TAB firm who certifies the report. - 10. Table of Contents with the total number of pages defined for each section of the report. Number each page in the report. - 11. Summary of contents including the following: - a. Indicated versus final performance. - b. Notable characteristics of systems. - c. Description of system operation sequence if it varies from the Contract Documents. - 12. Nomenclature sheets for each item of equipment. - 13. Data for terminal units, including manufacturer, type size, and fittings. - 14. Notes to explain why certain final data in the body of reports varies from indicated values. - 15. Test conditions for fans and pump performance forms including the following: - a. Settings for outside-, return-, and exhaust-air dampers. - b. Conditions of filters. - c. Cooling coil, wet- and dry-bulb conditions. - d. Face and bypass damper settings at coils. - e. Fan drive settings including settings and percentage of maximum pitch diameter. - f. Inlet vane settings for variable-air-volume systems. - g. Settings for supply-air, static-pressure controller. - h. Other system operating conditions that affect performance. - E. System Diagrams: Include schematic layouts of air and hydronic distribution systems. Present each system with single-line diagram and include the following: - 1. Quantities of outside, supply, return, and exhaust airflows. - 2. Water and steam flow rates. - 3. Duct, outlet, and inlet sizes. - 4. Pipe and valve sizes and locations. - 5. Terminal units. - 6. Balancing stations. - 7. Position of balancing devices. - F. Air-Handling Unit Test Reports: For air-handling units with coils, include the following: - 1. Unit Data: Include the following: - a. Unit identification. - b. Location. - c. Make and type. - d. Model number and unit size. - e. Manufacturer's serial number. - f. Unit arrangement and class. - g. Discharge arrangement. - h. Sheave make, size in inches, and bore. - i. Sheave dimensions, center-to-center, and amount of adjustments in inches. - j. Number of belts, make, and size. - k. Number of filters, type, and size. # 2. Motor Data: - a. Make and frame type and size. - b. Horsepower and rpm. - c. Volts, phase, and hertz. - d. Full-load amperage and service factor. - e. Sheave make, size in inches, and bore. - f. Sheave dimensions, center-to-center, and amount of adjustments in inches. # 3. Test Data (Indicated and Actual Values): - a. Total airflow rate in cfm. - b. Total system static pressure in inches wg. - c. Fan rpm. - d. Discharge static pressure in inches wg. - e. Filter static-pressure differential in inches wg. - f. Preheat coil static-pressure differential in inches wg. - g. Cooling coil static-pressure differential in inches wg. - h. Heating coil static-pressure differential in inches wg. - i. Outside airflow in cfm. - j. Return airflow in cfm. - k. Outside-air damper position. - I. Return-air damper position. - m. Vortex damper position. # G. Apparatus-Coil Test Reports: # 1. Coil Data: - a. System identification. - b. Location. - c. Coil type. - d. Number of rows. - e. Fin spacing in fins per inch o.c. - f. Make and model number. - g. Face area in sq. ft.. - h. Tube size in NPS. - i. Tube and fin materials. - j. Circuiting arrangement. - 2. Test Data (Indicated and Actual Values): - a. Airflow rate in cfm. - b. Average face velocity in fpm. - c. Air pressure drop in inches wg. - d. Outside-air, wet- and dry-bulb temperatures in deg F. - e. Return-air, wet- and dry-bulb temperatures in deg F. - f. Entering-air, wet- and dry-bulb temperatures in deg F. - g. Leaving-air, wet- and dry-bulb temperatures in deg F. - h. Water flow rate in gpm. - i. Water pressure differential in feet of head or psig. - j. Entering-water temperature in deg F. - k. Leaving-water temperature in deg F. - I. Refrigerant expansion valve and refrigerant types. - m. Refrigerant suction pressure in psig. - n. Refrigerant suction temperature in deg F. - o. Inlet steam pressure in psig. - H. Fan Test Reports: For supply, return, and exhaust fans, include the following: - 1. Fan Data: - a. System identification. - b. Location. - c. Make and type. - d. Model number and size. - e. Manufacturer's serial number. - f. Arrangement and class. - g. Sheave make, size in inches, and bore. - h. Sheave dimensions, center-to-center, and amount of adjustments in inches. #### 2. Motor Data: - a. Make and frame type and size. - b. Horsepower and rpm. - c. Volts, phase, and hertz. - d. Full-load amperage and service factor. - e. Sheave make, size in inches, and bore. - f. Sheave dimensions, center-to-center, and amount of adjustments in inches. - g. Number of belts, make, and size. - 3. Test Data (Indicated and Actual Values): - a. Total airflow rate in cfm. - b. Total system static pressure in inches wg. - c. Fan rpm. - d. Discharge static pressure in inches wg. - e. Suction static pressure in inches wg. - I. Round, Flat-Oval, and Rectangular Duct Traverse Reports: Include a diagram with a grid representing the duct cross-section and record the following: - 1. Report Data: - a. System and air-handling unit number. - b. Location and zone. - c. Traverse air temperature in deg F. - d. Duct static pressure in inches wg. - e. Duct size in inches. - f. Duct area in sq. ft.. - g. Indicated airflow rate in cfm. - h. Indicated velocity in fpm. - i. Actual airflow rate in cfm. - j. Actual average velocity in fpm. - k.
Barometric pressure in psig. - J. System-Coil Reports: For reheat coils and water coils of terminal units, include the following: - 1. Unit Data: - a. System and air-handling unit identification. - b. Location and zone. - c. Room or riser served. - d. Coil make and size. - e. Flowmeter type. - 2. Test Data (Indicated and Actual Values): - a. Airflow rate in cfm. - b. Entering-water temperature in deg F. - c. Leaving-water temperature in deg F. - d. Water pressure drop in feet of head or psig. - e. Entering-air temperature in deg F. - f. Leaving-air temperature in deg F. - K. Compressor and Condenser Reports: For refrigerant side of unitary systems, standalone refrigerant compressors, air-cooled condensing units, or water-cooled condensing units, include the following: - 1. Unit Data: - Unit identification. - b. Location. - c. Unit make and model number. - d. Compressor make. - e. Compressor model and serial numbers. - f. Refrigerant weight in lb. - g. Low ambient temperature cutoff in deg F. # 2. Test Data (Indicated and Actual Values): - a. Inlet-duct static pressure in inches wg. - b. Outlet-duct static pressure in inches wg. - c. Entering-air, dry-bulb temperature in deg F. - d. Leaving-air, dry-bulb temperature in deg F. - e. Condenser entering-water temperature in deg F. - f. Condenser leaving-water temperature in deg F. - g. Condenser-water temperature differential in deg F. - h. Condenser entering-water pressure in feet of head or psig. - i. Condenser leaving-water pressure in feet of head or psig. - j. Condenser-water pressure differential in feet of head or psig. - k. Control settings. - I. Unloader set points. - m. Low-pressure-cutout set point in psig. - n. High-pressure-cutout set point in psig. - o. Suction pressure in psig. - p. Suction temperature in deg F. - q. Condenser refrigerant pressure in psig. - r. Condenser refrigerant temperature in deg F. - s. Oil pressure in psig. - t. Oil temperature in deg F. - u. Voltage at each connection. - v. Amperage for each phase. - w. Kilowatt input. - x. Crankcase heater kilowatt. - y. Number of fans. - z. Condenser fan rpm. - aa. Condenser fan airflow rate in cfm. - bb. Condenser fan motor make, frame size, rpm, and horsepower. - cc. Condenser fan motor voltage at each connection. - dd. Condenser fan motor amperage for each phase. # L. Instrument Calibration Reports: # 1. Report Data: - Instrument type and make. - b. Serial number. - c. Application. - Dates of use. - e. Dates of calibration. #### 3.18 INSPECTIONS #### A. Initial Inspection: - 1. After testing and balancing are complete, operate each system and randomly check measurements to verify that the system is operating according to the final test and balance readings documented in the Final Report. - 2. Randomly check the following for each system: - a. Measure airflow of at least 10 percent of air outlets. - b. Measure water flow of at least 5 percent of terminals. - c. Measure room temperature at each thermostat/temperature sensor. Compare the reading to the set point. - d. Measure sound levels at two locations. - e. Measure space pressure of at least 10 percent of locations. - f. Verify that balancing devices are marked with final balance position. - g. Note deviations to the Contract Documents in the Final Report. # B. Final Inspection: - 1. After initial inspection is complete and evidence by random checks verifies that testing and balancing are complete and accurately documented in the final report, request that a final inspection be made by Architect. - 2. TAB firm test and balance engineer shall conduct the inspection in the presence of Architect. - 3. Architect shall randomly select measurements documented in the final report to be rechecked. The rechecking shall be limited to either 10 percent of the total measurements recorded, or the extent of measurements that can be accomplished in a normal 8-hour business day. - 4. If the rechecks yield measurements that differ from the measurements documented in the final report by more than the tolerances allowed, the measurements shall be noted as "FAILED." - 5. If the number of "FAILED" measurements is greater than 10 percent of the total measurements checked during the final inspection, the testing and balancing shall be considered incomplete and shall be rejected. - 6. TAB firm shall recheck all measurements and make adjustments. Revise the final report and balancing device settings to include all changes and resubmit the final report. - 7. Request a second final inspection. If the second final inspection also fails, Owner shall contract the services of another TAB firm to complete the testing and balancing in accordance with the Contract Documents and deduct the cost of the services from the final payment. # 3.19 ADDITIONAL TESTS - A. Within 90 days of completing TAB, perform additional testing and balancing to verify that balanced conditions are being maintained throughout and to correct unusual conditions. - B. Seasonal Periods: If initial TAB procedures were not performed during near-peak summer and winter conditions, perform additional testing, inspecting, and adjusting during near-peak summer and winter conditions. September 2007 **END OF SECTION 15950**